Главная · Сбалансированное питание · Атмосферное давление. Движение воздуха. Вода в атмосфере. Формула давления воздуха, пара, жидкости или твердого тела. Как находить давление (формула)

Атмосферное давление. Движение воздуха. Вода в атмосфере. Формула давления воздуха, пара, жидкости или твердого тела. Как находить давление (формула)

Решенные задачи из учебника ФИЗИКА. Методические указания и контрольные задания. Под редакцией А. Г. Чертова

Ниже приведены условия задач и отсканированные листы с решениями. Загрузка страницы может занять некоторое время.

209. Определить относительную молекулярную массу Mr 1) воды; 2) углекислого газа; 3) поваренной соли.

219. В сосуде объемом V = 40 л находится кислород при температуре Т = 300 К. Когда часть кислорода израсходовали, давление в баллоне понизилось на Δр=100кПа.Определить массу Δm израсходованного кислорода. Процесс считать изотермическим.

229. В азоте взвешены мельчайшие пылинки, которые движутся так, как если бы они были очень крупными молекулами. Масса каждой пылинки равна 6×10-10г. Газ находится при температуре T=400 К. Определить средние квадратичные скорости, а также средние кинетические энергии поступательного движения молекулы азота и пылинки.

239. Трехатомный газ под давлением P = 240кПа и температуре T = 20°C занимает объем V=10л. Определить теплоемкость Ср этого газа при постоянном давлении.

249. Средняя длина свободного пробега молекулы водорода при некоторых условиях равна 2 мм. Найти плотность ρ водорода при этих условиях.

259. Какая доля ω1 количества теплоты Q, подводимого к идеальному двухатомному газу при изобарном процессе, расходуется на увеличение ΔU внутренней энергии газа и какая доля ω2 на работу А расширения? Рассмотреть три случая, если газ: 1) одноатомный; 2) двухатомный; 3) трехатомный.

269. Газ, совершающий цикл Карно, получает теплоту Q1 = 84кДж. Определить работу А газа, если температура T1 теплоотдатчика в три раза выше температуры T2 теплоприемника.

279. Воздушный пузырек диаметром d = 2,2 мкм находится в воде у самой ее поверхности. Определить плотность ρ воздуха в пузырьке, если воздух над поверхностью воды находится при нормальных условиях.


















ВОЗДЕЙСТВИЕ ДАВЛЕНИЯ НА ОСНОВНЫЕ АСПЕКТЫ ДАЙВИНГА

Как меняется давление под водой и каким образом его изменение влияет на плавучесть, уравнивание давления в пазухах, действительное время на дне и вероятность развития декомпрессионной болезни?

Давайте еще раз рассмотрим основные аспекты, связанные с давлением, и вспомним об особенности: ближе к поверхности давление меняется быстрее, чем на глубине .

Воздух имеет вес
Да, воздух на самом деле тоже имеет вес. Вес воздуха создает давление на тело человека, равное примерно 760 мм рт. ст. Именно этот показатель называется нормальным атмосферным давлением, поскольку именно такое давление атмосфера оказывает на земную поверхность и все находящиеся на ней предметы. Большинство расчётов давления в дайвинге указывается в атмосферных единицах (atm).

С увеличением глубины увеличивается давление
Чем больше толща воды над дайвером, тем большее давление оказывается на его организм. Чем глубже он погружается, тем больше воды над ним и тем большее давление создает эта вода. Давление, оказываемое на дайвера на определенной глубине, – это сумма давлений и воздуха, и воды.

Каждые 10 м соленой воды = 1 atm
Испытываемое дайвером давление = давление воды + 1
atm атмосферного давления

Из-за давления воды воздух сжимается
Согласно закону Бойля-Мариотта, с увеличением давления наличествующий в воздушных полостях в теле человека и в дайвоборудовании воздух сжимается (и, соответственно, расширяется по мере уменьшения давления).

Закон Бойля-Мариотта : Объем воздуха = 1/ Давление

Не дружите с математикой? Тогда я поясню: это означает, что чем глубже вы погружаетесь, тем больше сжимается воздух. Если, скажем, давление равно 2 atm, что соответствует глубине 10 метров соленой воды, то объем сжатого воздуха составит ½ от изначального объема воздуха на поверхности.

Давление влияет на многие аспекты дайвинга

Теперь, когда мы повторили физику, давайте рассмотрим, как давление влияет на главные аспекты дайвинга.

1. Уравнивание давления

По мере погружения, давление заставляет сжиматься имеющийся в теле дайвера воздух. Пространства, где есть воздух (ушные раковины, маска, легкие), становятся «вакуумными», потому что сжатый воздух создаёт отрицательное давление. Это вызывает болевые ощущения и приводит к баротравме.

При поднятии на поверхность происходит обратное. Уменьшающееся давление заставляет воздух, находящийся в воздушных полостях дайвера, расширяться. Возникает положительное давление, поскольку теперь каждая полость переполняется расширившимся воздухом. При самом худшем развитии событий это может привести к разрыву барабанной перепонки или легких. Вот почему дайвер ни в коем случае не должен задерживать дыхание будучи под водой. Приблизившись к поверхности даже на немного при задержанном дыхании, он может травмировать легкие.

Чтобы избежать травм, связанных с давлением (например, баротравмы ушной раковины), дайвер должен уравнивать давление в своем организме с внешним давлением.

Чтобы уравнять давление при погружении, дайвер добавляет воздуха в воздушные полости в противовес эффекту «вакуума»:

  • осуществляя нормальное дыхание, что обеспечивает доступ воздуха в легкие при каждом вдохе
  • добавляя воздух в пространство между лицом и маской, выдыхая через нос
  • добавляя воздух в ушные раковины и пазухи, используя одну из техник выравнивания давления в ушах
  • чтобы уравнять давление при поднятии на поверхность, дайвер выпускает воздух из всех воздушных пазух, чтобы они не распирали жизненно важные органы:
  • осуществляя нормальное дыхание, благодаря которому лишний воздух выходит из легких при каждом выдохе
  • осуществляя медленное поднятие на поверхность, давая возможность самостоятельно выйти лишнему воздуху из ушей, синусов и пространства между лицом и маской

2. Плавучесть

Дайверы контролируют свою плавучесть путем регулирования объема своих легких и компенсатора плавучести.

По мере погружения, увеличившееся давление заставляет сжиматься воздух в компенсаторе плавучести и мокром костюме (в неопрене есть маленькие пузырьки). Таким образом, дайвер создает отрицательную плавучесть и опускается на глубину. По мере погружения воздух в оборудовании еще больше сжимается и дайвер погружается еще быстрее. Если он не подкачает воздух в свой BCD, чтобы компенсировать отрицательную плавучесть, то может очень быстро оказаться в ситуации полной потери контроля над процессом погружения.

При поднятии на поверхность, напротив, воздух в оборудовании для дайвинга начинает расширяться. Расширившийся воздух дает положительную плавучесть и поднимает дайвера наверх. По мере его движения к поверхности внешнее давление уменьшается, а воздух в оборудовании продолжает расширяться. Дайвер должен постоянно стравливать воздух с BCD во время всплытия, иначе он рискует совершить неконтролируемое быстрое всплытие (одна из самых опасных ситуаций).

Дайвер должен подкачивать воздух в свой компенсатор при погружении и стравливать его при поднятии на поверхность. Это правило может казаться нелогичным до тех пор, пока дайвер не поймет сам принцип воздействия давления на плавучесть.

3. Действительное время на дне

Действительное время на дне – это период, который дайвер может оставаться на дне (запланированной глубине) до того, как начнет подниматься на поверхность. Внешнее давление влияет на этот период в двух важных аспектах.

Увеличившееся потребление воздуха сокращает действительное время на дне

Воздух, которым дышит дайвер, сжимается из-за внешнего давления. Если дайвер погружается на 10 м, что соответствует давлению 2 atm, воздух, которым он дышит, сжимается вполовину от изначального объема, т.к. мы можем дышать под давление окружающей среды и именно под этим давлением регулятор подает нам воздух. Соответственно при равных условиях (темп и глубина дыхания) на глубине 10 метров каждый раз, когда дайвер делает вдох, он потребляет вдвое больше воздуха, чем на поверхности. Соответственно, запас его воздуха иссякнет вдвое быстрее. Чем глубже будет погружение, тем быстрее кончится запас воздуха.

Увеличившееся поглощение азота сокращает действительное время на дне

Чем больше внешнее давление, тем быстрее ткани организма дайвера абсорбируют азот. Не будем вдаваться в подробности, однако напомним, что организм дайвера может переносить строго определенное количества азота и увеличение этой нормы может привести к развитию декомпрессионной болезни. Чем глубже погружается дайвер, тем меньше у него времени до того, как его ткани абсорбируют максимально допустимое количество этого газа.

Поскольку по мере увеличения глубины увеличивается и давление, то дайвер начинает потреблять больше воздуха и быстрее абсорбировать азот.

4. Быстрое изменение давления может привести к развитию декомпрессионной болезни

Увеличившееся давление под водой заставляет ткани организма дайвера абсорбировать больше азота. Если дайвер поднимается на поверхность медленно, то расширяющийся азот постепенно выходит из тканей и крови дайвера при каждом выдохе.

Однако организм дайвера не способен быстро избавляться от лишнего азота. Чем быстрее дайвер поднимается на поверхность, тем быстрее расширяется азот и тем быстрее он должен удаляться из организма. Если дайвер проходит через быстро меняющееся давление не останавливаясь, его организм оказывается не в состоянии избавиться от этого расширившегося газа и тогда он образует пузырьки в крови и тканях.

Эти пузырьки приводят к развитию декомпрессионной болезни, так как блокируют нормальный ток крови, вызывая инсульт, паралич и другие угрожающие жизни состояния. Быстрое изменение давления является одной самых распространённых причин возникновения декомпрессионной болезни.

Чем ближе к поверхности – тем быстрее меняется давление.

Чем ближе дайвер к поверхности, тем быстрее меняется внешнее давление.

Изменение глубины / Изменение давления / Увеличение давления

0 – 10 м / x 2.0
10 м – 20 м / x 1.5
20 м – 30 м / x 1.33

А теперь сравните с меньше глубиной (ближе к поверхности):

0 – 1,5 м / x 1.15
1, 5 м – 3 м / x 1.13
3 м – 5 м / x 1.12

Чем ближе дайвер к поверхности, тем чаще должен компенсировать меняющееся внешнее давление. Чем меньше глубина, тем чаще дайвер должен:

  • уравнивать давление в ушах и маске
  • регулировать свою плавучесть для того, чтобы избежать неконтролируемого погружения или спуска

За несколько метров до поверхности дайвер должен быть особенно осторожным. Никогда не нужно пулей лететь вверх после остановки безопасности. На последних 5 метрах внешнее давление меняется быстрее всего и пройти их нужно медленнее, чем весь остальной подъем.

Большинство новичков обычно проходят первые 12 метров глубины под присмотром более опытных дайверов. Так должно быть в идеале. Тем не менее, вы всегда должны помнить, что для дайверу труднее контролировать свою плавучесть и уравнивать давление на мелководье, чем на большой глубине, поскольку изменения давления более значительные!

Задача

Определить абсолютное давление р о на свободной поверхности воды в нижнем сосуде, если в верхнем сосуде жидкость керосин Т-1. Известны h 1 и h 2 .h 1 = 210 мм; h 2 = 170 мм.

ρ к = 808 кг/м 3 - плотность керосина;

ρ = 1000кг/м 3 - плотность воды.

Решение.

Согласно основному уравнению гидростатики р абс = р 0 + ρgh , где р 0 - давление на поверхности жидкости; ρ - плотность жидкости; h - глубина погружения точки.

Давление на поверхности в нижнем сосуде равно р о .

Тогда · 9,81 ? 0,21 + 1000 ? 9,81 ? 0,17 = 103330 Па.

Ответ: абсолютное давление на поверхности воды в нижнем сосуде 103330 Па.

Задача 2.

Определить силу давления на коническую крышку горизонтального цилиндрического сосуда с диаметром D , заполненного водой с температурой С, показание манометра р м . Показать на рисунке вертикальную и горизонтальную составляющие силы, а также полную силу давления на коническую крышку. D=a.

р м = 0,4 МПа = 400 000 Па; а = 1000 мм = 1м; D = 1,2 м; ρ = 1000 кг/м 3 .

Решение.

Коническая крышка имеет криволинейную стенку. Сила гидростатического давления на эту стенку будет равна,

р м
D
а
D
S z
P x
P z
P

где Р х - проекция силы на горизонтальную ось;

Р z - проекция силы на вертикальную ось.

Р х = p c s z = pgh c s z , где р с - давление в центре тяжести вертикальной проекции крышки S х =
;

h c - глубина погружения центра тяжести вертикальной проекции крышки S z .
м;

Р z - вес жидкости в объёме конической крышки V;

Тогда полная сила гидростатического давления на коническую крышку будет равна:

Ответ: Р = 451 000Н

Задача 3.

Плоский прямоугольный щит АВ шириной в =2 м, расположенный под углом α = 60 о к горизонту, поддерживает уровень воды в прямоугольном канале глубиной H =4м. Определить силу гидростатического давления на щит и положение центра давления. Построить эпюру гидростатического давления.

Решение. Силу избыточного гидростатического давления определим по формуле (М.2). В нашем случае h c = H / 2. А площадь щита

S = в Н / sinα = 2·4 / 0,866 = 9,25 м 2 .

Р = ρgh c S = 998 ? 9.81 ? 9.25 = 181 480 H.

Положение центра давления определяется по формуле:

,

где
м 4

Следовательно,

Задача 4.

Определить величину и направление силы гидростатического давления на четверть АВ цилиндрической стенки, поддерживающей слой воды h = r = 2 м. Ширина криволинейной поверхности b = 4 м.

Задача 5.

Решение. По формуле определим горизонтальную составляющую силы Р X .

Р Х =
= 1000 · 9,81 · 2 2 /2 · 4 = 80 000 Н.

По формуле p z = pgV


определим вертикальную составляющую силы. Объём тела давления рассчитываем по формуле

.

По формуле находим равнодействующую силы давления.

Направление силы гидростатического давления определяется углом наклона её к горизонту, тангенс которого находят из силового треугольника tgα = P Z / P X = 122 970/80 000= 1,54 , α=57 0 С.

Проведя прямую через центр окружности (точка О) под углом α к горизонту, получим направление Р, а точка пересечения этой прямой с образующей цилиндра даёт центр давления - точку D.

Гидродинамика

По горизонтальной трубе общей длиной l =10 м и внутренним диаметром d = 60 мм подаётся вода при температуре t = 20 о С. Труба снабжена вентилем К (коэффициент сопротивления ξ=5), а также манометрами, которые фиксируют избыточные давление р 1 = 2·10 5 Па на входе и р 2 = 1,5·10 5 Па на выходе.

Определить расход воды Q , приняв в расчётах коэффициент гидравлического трения λ = 0,023, и построить в масштабе напорную и пьезометрическую линии для трубы.

Решение. Для определения расхода воды найдём среднюю скорость её движения по трубопроводу, применив уравнение Бернулли для сечений 1−1 и 2−2:

(А)

За плоскость сравнения принимаем плоскость, проходящую через ось трубы 0−0. Так как заданный трубопровод постоянного диаметра, то

скоростные напоры av 2 /2g в сечениях 1−1 и 2−2 будут равными.

Сумма гидравлических потерь h 1-2 состоит из потерь в местных сопротивлениях h м и потерь по длине h тр:

Подставим значения потерь в уравнение Бернулли (Б) и определим среднюю скорость:

,

Определим расход воды по формуле:

Для построения напорной и пьезометрической линий рассчитаем:

1) скоростной напор h ck = av 2 /2g;

,

где υ - кинематический коэффициент вязкости воды при 20 о С;

режим течения турбулентный, поэтому a = 1,

;

2) полный напор в сечении 1−1:

3) полный напор в сечении 2−2:

4) потери напора в вентиле К

;

5) потери напора на длине l: 2:

Проверка по уравнению (Б):

20,39 = 15,29 + 2,9 + 2?1,11

т.е. расчёты выполнены верно, относительная погрешность составляет (0,02:20,4)·100 = 0,1 %.

По найденным выше значениям строим линии. Откладываем от плоскости сравнения 0−0 в сечении 1−1 в масштабе полный напор Н 1 =20,97 м, и по ходу движения воды от него отнимаем потери

Получаем напорную линию. Откладывая от неё вниз скоростной напор h ск, получаем пьезометрическую линию.

Задача 6.

При движении жидкости из резервуара в атмосферу по горизонтальному трубопроводу диаметром dи длиной 2L уровень в пьезометре, установленном посредине длины трубы равен h. Определить расход воды и коэффициент гидравлического трения трубы L, если статический напор в баке постоянен и равен Н. Построить пьезометрическую и напорную линии. Сопротивлением входа в трубу пренебречь.

Н = 7 м, h = 3 м, l = 3м, d = 30 мм = 0,03 м, р = 1000 кг/м 3 .

Решение. Составим уравнение Бернулли для сечений 1-1 и 2-2, плоскость сравнения проходит через ось трубы 0-0.

,

где z - расстояние от плоскости 0-0 до центра тяжести сечения;

Пьезометрическая высота в сечении;

Скоростная высота в сечении;

h п1-2 - потери напора на гидравлические сопротивления между сечениями.

Тогда
,

где L - коэффициент гидравлического трения;

- потери напора на трение,

Составим уравнение Бернулли для сечений 2−2 и 3−3 и решим относительно плоскости 0−0.

,

Отсюда

Решаем совместно полученные выражения

Расход жидкости м 3 /с.

Определим:

Ответ: λ = 0,03, Q = 0,00313 м 3 /с.

5.3 Истечение жидкости через отверстия и насадки

Задача 7 .

Определить длину трубы L, при которой опорожнение цилиндрического бака диаметром Dна глубину Н будет происходить в два раза медленнее, чем через отверстие того же диаметра d. Коэффициент гидравлического трения в трубе принять λ=0,025.

Н = 8 м, d = 0,5 м.

Решение.

Расход через отверстие в тонкой стенке равен
,

где μ - коэффициент расхода при истечении через отверстие m = 0.62;

S - площадь сечения отверстия,
;

Н - напор.

Расход через трубу длиной l и диаметром d c условием задачи составит:

, где M TP - коэффициент расхода через трубу.

Время опорожнения сосуда при переменном напоре определяется по формуле t = 2v/Qд, где V - объём жидкости в баке при наполнении его напором Н ; Q Д - действительный расход.

По условию задачи
, или
.

Тогда
. Из этого выражения найдём длину трубы l.

Ответ: длина тубы l = 19,5м.

5.4 Гидравлический удар в трубах

Задача 8 .

Вода в количестве Q перекачивается по чугунной трубе диаметром d , длиной l c толщиной стенки . Свободный конец трубы снабжён затвором. Определить время закрытия затвора при условии, чтобы повышение давления в трубе вследствие гидравлического удара не превышало
Па. Как повысится давление при мгновенном закрытии затвора?

Q =0,053 м 3 /с. d = 0,15м, l = 1600м, = 9,5 мм,
= 1 000 000 Па, p =1000 кг /м 3 .

Решение.

При условии, что время полного закрытия затвора
, ударная волна будет равна
,

где p - плотность жидкости;

v- начальная скорость течения жидкости;

l - длина трубы;

T - фаза гидравлического удара.

Из этого выражения следует

.

По условию задачи?р=1 000 000 Па.
м.

Т =
с.

При мгновенном закрытии затвора превышение давления составит

,

где Е Ж - модуль упругости жидкости, Е Ж =
Па;

Е - модуль упругости материала трубы, Е = 152
Па;

d - диаметр трубы;

δ- толщина стенки трубы.

кПа.

Ответ: Т = 0,1 с, /\p = 3900кПа.

Список литературы

1. Прозоров И.В., Николадзе Г.И., Минаев А.В. Гидравлика, водоснабжение и канализация. - М.: Высшая школа, 1990.

2. Калицун В.И. Гидравлика, водоснабжение и канализация: Учеб. Пособие для вузов по спец. «Пром. и гражд. стр-во». - 4-е изд., перераб. И доп. - М.: Стройиздат, 2003.

3. Константинов Н.П., Петров Н.А., Высоцкий Л.И. Гидравлика, гидрология, гидрометрия: учебник для вузов. В 2 ч. /Под ред. Н.М. Константинова. - М.: Высш. шк., 1987. - 438 с.: ил.

4. Альтшуль А.Д., Животовская Л.С., Иванов Л.П. Гидравлика и аэродинамика. − М.: Стройиздат, 1987.− 470 с.

5. Чугаев Р. Р. Гидравлика.- Л.: Энергоиздат, 1982. - 678 с.

6. Основы гидравлики и аэродинамики: учебник для техникумов и колледжей. Калицун В.И., Дроздов Е.В., Комаров А.С., Чижик К.И.- 2-е изд., перераб. и доп. - М.: ОАО Изд-во «Стройиздат», 2004. - 296 с.

7. Киселёв П.Г. Гидравлика: основы механики жидкости и газа: учеб. пособие для вузов. - М.: Энергия, 1980. - 460.

8. Справочник по гидравлике. / Под ред. В.А. Большакова− Киев: издательское объединение «Вища школа», 1977.− 280 с.

Лабораторная работа № 11

КРАТКАЯ ТЕОРИЯ. Важнейший признак жидкости - существование свободной поверхности . Молекулы поверхностного слоя жидкости, имеющего толщину порядка 10 -9 м, находятся в ином состоянии, чем молекулы в толще жидкости. Поверхностный слой оказывает на жидкость давление, называемое молекулярным , что приводит к появлению сил, которые называются силами поверхностного натяжения .

Силы поверхностного натяжения в любой точке поверхности направлены по касательной к ней и по нормали к любому элементу линии, мысленно проведенной на поверхности жидкости. Коэффициент поверхностного натяжения -физическая величина, показывающая силу поверхностного натяжения, действующую на единицу длины линии, разделяющей поверхность жидкости на части:

С другой стороны, поверхностное натяжение можно определить как величину, численно равную свободной энергии единицы поверхностного слоя жидкости. Под свободной энергией понимают ту часть энергии системы, за счет которой может быть совершена работа при изотермическом процессе.

Коэффициент поверхностного натяжения зависит от природы жидкости. Для каждой жидкости он является функцией температуры и зависит от того, какая среда находится над свободной поверхностью жидкости.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА. Экспериментальная установка изображена на рис. 1. Она состоит из аспиратора А, соединенного с микроманометром М и сосудом В, в котором находится исследуемая жидкость. В аспиратор наливается вода. С помощью крана К аспиратор А может отсоединяться от сосуда В и присоединяться к такому же сосуду С с другой исследуемой жидкостью. Сосуды В и С плотно закрываются резиновыми пробками, имеющими по отверстию. В каждое отверстие вставляется стеклянная трубочка, конец которой представляет собой капилляр. Капилляр погружается на очень малую глубину в жидкость (так, чтобы он только касался поверхности жидкости). Микроманометр измеряет разность давления воздуха в атмосфере и аспираторе, или, что то же самое, в капилляре и сосуде В или С.

Микроманометр состоит из двух сообщающихся сосудов, один из которых представляет собой чашку большого диаметра, а другой наклонную стеклянную трубку малого диаметра (2 - 3 мм) (рис. 2). При достаточно большом отношении площадей сечений чашки и трубки можно пренебречь изменением уровня в чашке. Тогда по уровню жидкости в трубке малого диаметра можно определить измеряемую величину разности давлений:

где - плотность манометрической жидкости; - расстояние вдоль трубки принимаемого неизменным уровня жидкости в чашке; - угол, образованный наклонной трубкой с плоскостью горизонта.

В начальный момент времени, когда давление воздуха над поверхностью жидкости в капилляре и сосуде В одинаково и равно атмосферному, уровень смачивающей жидкости в капилляре выше, чем в сосуде В, а уровень несмачивающей – ниже, так как смачивающая жидкость в капилляре образует вогнутый мениск, а несмачивающая - выпуклый.

Молекулярное давление под выпуклой поверхностью жидкости больше, а под вогнутым - меньше относительно давления под плоской поверхностью. Молекулярное давление, обусловленное кривизной поверхности, принято называть избыточным капиллярным давлением (давлением Лапласа) . Избыточное давление под выпуклой поверхностью считается положительным, под вогнутой - отрицательным. Сила этого давления всегда направлена к центру кривизны сечения поверхности. В случае сферической поверхности избыточное давление можно вычислить по формуле:

где - поверхностное натяжение, - радиус сферической поверхности.

Смачивающая капилляр жидкость поднимается до тех пор, пока гидростатическое давление столбика жидкости высотой (рис. 3) не уравновесит избыточного давления, направленного в этом случае вверх. Высота определяется из условия равновесия:

где - ускорение свободного падения, т.е.

Если, повернув кран аспиратора А, медленно выпускать из него воду, то давление воздуха в аспираторе, в соединенных с ним сосуде В и наклонном колене микроманометра, начнет уменьшаться. В капилляре же над поверхностью жидкости давление равно атмосферному. В результате увеличивающейся разности давлений мениск жидкости в капилляре будет опускаться, сохраняя кривизну, пока не опустится до нижнего конца капилляра (рис. 3в). В этот момент давление воздуха в капилляре будет равно:

где - давление воздуха в сосуде В, - глубина погружения капилляра в жидкость, - давление Лапласа. Разность давлений воздуха в капилляре и сосуде В равна:

С этого момента начинает меняться кривизна мениска. Давление воздуха в аспираторе и сосуде В продолжает уменьшаться. Так как разность давлений увеличивается, радиус кривизны мениска убывает, а кривизна возрастает. Наступает момент, когда радиус кривизны становится равным внутреннему радиусу капилляра (рис. 3в), а разность давлений становится максимальной. Затем радиус кривизны мениска снова увеличивается, и равновесие будет неустойчивым. Образуется пузырек воздуха, который отрывается от капилляра и поднимается на поверхность. Жидкость затягивает отверстие. Далее все повторяется. На рис. 4 показано, как меняется радиус кривизны мениска жидкости, начиная с момента, когда он дошел до нижнего конца капилляра.

Из сказанного выше следует, что:

, (1)

где - внутренний радиус капилляра. Эту разность можно определить с помощью микроманометра, так как

где - плотность манометрической жидкости, - максимальное смещение уровня жидкости в наклонной трубке микроманометра, - угол между наклонным коленом микроманометра и горизонталью (см. рис. 2).

Из формул (1) и (2) получим:

. (3)

Так как глубина погружения капилляра в жидкость ничтожна , то ею можно пренебречь, тогда:

или , (4)

где - внутренний диаметр капилляра.

В том случае, когда жидкость не смачивает стенки капилляра, за в формуле (4) принимают внешний диаметр капилляра. В качестве манометрической жидкости в микроманометре используется вода ( = 1×10 3 кг/м 3).

ИЗМЕРЕНИЯ. 1. Плотно закрыть резиновой пробкой капилляр, предварительно измерив его внутренний диаметр с помощью микроскопа. Капилляр вставить в отверстие пробки. Конец трубки привести в соприкосновение с жидкостью.

2. Налить в аспиратор воду до метки и закрыть его. Добиться равенства давлений в обоих коленах микроманометра, для чего на короткое время извлечь кран К. Установить его в такое положение, в котором он соединяет сосуд с аспиратором.

3. Открыть кран аспиратора настолько, чтобы изменение давления происходило достаточно медленно. Пузырьки воздуха должны отрываться примерно через каждые 10-15 с. После установления указанной частоты образования пузырьков можно проводить измерения.

ЗАДАНИЕ.

1. С помощью термометра определить и записать комнатную температуру T .

2. Девять раз определить максимальное смещение уровня жидкости в наклонном колене микроманометра. Для расчета коэффициента поверхностного натяжения взять среднее значение Н ср .

Ткань можно проткнуть иголкой, но не карандашом (если приложить такое же усилие). Карандаш и игла имеют разную форму и поэтому оказывают на ткань неодинаковое давление. Давление вездесуще. Оно приводит в действие механизмы (см. статью « «). Оно влияет на . оказывают давление на поверхности, с которыми соприкасаются. Атмосферное давление влияет на погоду прибор для измерения атмосферного давления – .

Что такое давление

Когда на тело перпендикулярно к его поверхности действует , то тело оказывается под давлением. Давление зависит от того, насколько велика сила, и от площади поверхности, на которую сила действует. Например, если выйти на снег в обычной обуви, можно провалиться; по этого не произойдет, если мы наденем лыжи. Вес тела один и тот же, но во втором случае давление распределится по большей поверхности. Чем больше поверхность, тем меньше давление. У северного оленя широкие копыта - ведь он ходит на снегу, и давление копыта на снег должно быть как можно меньше. Если нож острый, сила прикладывается к поверхности небольшой площади. Тупой нож распределяет силу по большей поверхности, поэтому и режет хуже. Единица давления - паскаль (Па) - названа в честь французского ученого Блеза Паскаля (1623 - 1662), сделавшего немало открытий в области атмосферного давления.

Давление жидкостей и газов

Жидкости и газы принимают форму сосуда, в котором они содержатся. В отличие от твердых тел, жидкости и газы давят на все стенки со­суда. Давление жидкостей и газов направлено во все сто­роны. давит не только на дно, но и на стенки аквариума. Сам аквариум давит только вниз. давит изнутри на футбольный мяч во всех направлениях, и поэтому мяч круглый.

Гидравлические механизмы

Действие гидравлических механизмов основано на давлении жидкости. Жид­кость не сжимается, поэтому если к ней приложить силу, она будет вынуждена сдвинуться с места. И тормоза работают на гидравлическом принципе. Уменьшение оборотов колее достигается с помощью давления тормозной жидкости. Водитель нажимает на педаль, поршень прокачивает тормозную жидкость через цилиндр, дальше она по трубке поступает в два других цилиндра и давит на поршни. Поршни прижимают тормозные колодки к диску колеса. Возникающее замедляет вращение колеса.

Пневматические механизмы

Пневматические механизмы действуют благодаря давлению газов - как правило, воздуха. В отличие от жид­костей, воздух может сжиматься, и тогда давление его возрастает. Действие отбойного молотка основано на том, что поршень сжимает воздух внутри его до очень большого давления. В отбойном молотке сжатый воздух давит на резец с такой силой, что можно бурить даже камень.

Пеногонный огнетушитель - это пневматическое устройство, работающее на сжатом углекислом газе. Сжав рукоятку, вы высвобождаете находящийся в канистре сжатый углекислый газ. Газ с огромной силой давит вниз, на специальный раствор, вытесняет его в трубку и шланг. Из шланга вырывается струя воды и пены.

Атмосферное давление

Атмосферное давление создастся весом воздуха над поверхностью . На каждый квадратный метр воздух давит с силой большей, чем вес слона. Вблизи поверхности Земли давление выше, чем высоко в небе. На высоте 10 000 метров там, где летают реактивные самолеты, давление невелико, так как сверху давит незначительная воздушная масса. В салоне самолёта поддерживается нормальное атмосферное давление, чтобы люди могли свободно дышать на большой высоте. Но даже в герметичном салоне самолёта у людей закладывает уши, когда давление становится ниже, чем давление внутри ушной раковины.

Атмосферное давление измеряется в миллиметрах ртутного столба. Когда меняется давление, меняется и . Низкое давление означает, что предсто­ит ухудшение погоды. Высокое давле­ние приносит ясную погоду. Нормальное давление на уровне моря – 760 мм (101 300 Па). В дни ураганов оно может упасть до 683 мм (910 Па).