Главная · Здоровье · Чему равна сумма внешних углов четырехугольника. Многоугольник, выпуклый многоугольник, четырехугольник

Чему равна сумма внешних углов четырехугольника. Многоугольник, выпуклый многоугольник, четырехугольник

ВПИСАННЫЕ И ОПИСАННЫЕ МНОГОУГОЛЬНИКИ,

§ 106. СВОЙСТВА ВПИСАННЫХ И ОПИСАННЫХ ЧЕТЫРЁХУГОЛЬНИКОВ.

Теорема 1. Сумма противоположных углов вписанного четырёхугольника равна 180° .

Пусть в окружность с центром О вписан четырёхугольник ABCD (черт. 412). Требуется доказать, что / А + / С = 180° и / В + / D = 180°.

/ А, как вписанный в окружность О, измеряется 1 / 2 BCD.
/ С, как вписанный в ту же окружность, измеряется 1 / 2 BAD.

Следовательно, сумма углов А и С измеряется полусуммой дуг BCD и BAD в сумме же эти дуги составляют окружность, т. е. имеют 360°.
Отсюда / А + / С = 360°: 2 = 180°.

Аналогично доказывается, что и / В + / D = 180°. Однако это можно вывести и иным путём. Мы знаем, что сумма внутренних углов выпуклого четырёхугольника равна 360°. Сумма углов А и С равна 180°, значит, на сумму других двух углов четырёхугольника остаётся тоже 180° .

Теорема 2 (обратная). Если в четырёхугольнике сумма двух противоположных углов равна 180°, то около такого четырёхугольника можно описать окружность.

Пусть сумма противоположных углов четырёхугольника ABCD равна 180°, а именно
/ А + / С = 180° и / В + / D = 180° (черт. 412).

Докажем, что около такого четырёхугольника можно описать окружность.

Доказательство . Через любые 3 вершины этого четырёхугольника можно провести окружность, например через точки А, В и С. Где будет находиться точка D?

Точка D может занять только одно из следующих трёх положений: оказаться внутри круга, оказаться вне круга, оказаться на окружности круга.

Допустим, что вершина окажется внутри круга и займёт положение D" (черт. 413). Тогда в четырёхугольнике ABCD" будем иметь:

/ В + / D" = 2d .

Продолжив сторону AD" до пересечения с окружностью в точке Е и соединив точки Е и С, получим вписанный четырёхугольник АВСЕ, в котором по прямой теореме

/ B + / Е = 2d .

Из этих двух равенств следует:

/ D" = 2d - / B;
/ E = 2d - / B;

/ D" = / E,

но этого быть не может, так как / D", как внешний относительно треугольника CD"E, должен быть больше угла Е. Поэтому точка D не может оказаться внутри круга.

Так же доказывается, что вершина D не может занять положение D" вне круга (черт. 414).

Остаётся признать, что вершина D должна лежать на окружности круга, т. е. совпасть с точкой Е, значит, около четырёхугольника ABCD можно описать окружность.

Следствия. 1. Вокруг всякого прямоугольника можно описать окружность.

2. Вокруг равнобедренной трапеции можно описать окружность.

В обоих случаях сумма противоположных углов равна 180°.

Теорема 3. В описанном четырёхугольнике суммы противоположных сторон равны. Пусть четырёхугольник ABCD описан около окружности (черт. 415), т. е. стороны его АВ, ВС, CD и DA - касательные к этой окружности.

Требуется доказать, что АВ + CD =AD + ВС. Обозначим точки касания буквами М, N, К, Р, На основании свойств касательных, проведённых к окружности из одной точки (§ 75), имеем:

АР = АК;
ВР = ВМ;
DN = DK;
CN = СМ.

Сложим почленно эти равенства. Получим:

АР + ВР + DN + CN = АК + ВМ +DK + СМ,

т. е. АВ + CD = AD + ВС, что и требовалось доказать.

Упражнения.

1. Во вписанном четырёхугольнике два противоположных угла относятся как 3: 5,
а другие два относятся как 4: 5. Определить величину этих углов.

2. В описанном четырёхугольнике сумма двух противоположных сторон равна 45 см. Остальные две стороны относятся как 0,2: 0,3. Найти длину этих сторон.

Понятие многоугольника

Определение 1

Многоугольником называется геометрическая фигура в плоскости, которая состоит из попарно соединенных между собой отрезков, соседние из которых не лежат на одной прямой.

При этом отрезки называются сторонами многоугольника , а их концы - вершинами многоугольника .

Определение 2

$n$-угольником называется многоугольник, у которого $n$ вершин.

Виды многоугольников

Определение 3

Если многоугольник всегда будет лежать по одну сторону от любой прямой, проходящей через его стороны, то многоугольник называется выпуклым (рис. 1).

Рисунок 1. Выпуклый многоугольник

Определение 4

Если многоугольник лежит по разные стороны хотя бы одной прямой, проходящей через его стороны, то многоугольник называется невыпуклым (рис. 2).

Рисунок 2. Невыпуклый многоугольник

Сумма углов многоугольника

Введем теорему о сумме углов -угольника.

Теорема 1

Сумма углов выпуклого -угольника определяется следующим образом

\[(n-2)\cdot {180}^0\]

Доказательство.

Пусть нам дан выпуклый многоугольник $A_1A_2A_3A_4A_5\dots A_n$. Соединим его вершину $A_1$ со всеми другими вершинами данного многоугольника (рис. 3).

Рисунок 3.

При таком соединении мы получим $n-2$ треугольника. Просуммировав их углы мы получим сумму углов данного -угольника. Так как сумма углов треугольника равняется ${180}^0,$ получим, что сумма углов выпуклого -угольника определяется по формуле

\[(n-2)\cdot {180}^0\]

Теорема доказана.

Понятие четырехугольника

Используя определение $2$, легко ввести определение четырехугольника.

Определение 5

Четырехугольником называется многоугольник, у которого $4$ вершины (рис. 4).

Рисунок 4. Четырехугольник

Для четырехугольника аналогично определены понятия выпуклого четырехугольника и невыпуклого четырехугольника. Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм (рис. 5).

Рисунок 5. Выпуклые четырехугольники

Теорема 2

Сумма углов выпуклого четырехугольника равняется ${360}^0$

Доказательство.

По теореме $1$, мы знаем, что сумма углов выпуклого -угольника определяется по формуле

\[(n-2)\cdot {180}^0\]

Следовательно, сумма углов выпуклого четырехугольника равняется

\[\left(4-2\right)\cdot {180}^0={360}^0\]

Теорема доказана.

Выпуклый четырехугольник – это фигура, состоящая из четырех сторон, соединенных между собой в вершинах, образующих вместе со сторонами четыре угла, при этом сам четырехугольник всегда находится в одной плоскости относительно прямой, на которой лежит одна из его сторон. Другими словами, вся фигура находится по одну сторону от любой из ее сторон.

Как видно, определение довольно легко запоминающееся.

Основные свойства и виды

К выпуклым четырехугольникам можно отнести практически все известные нам фигуры, состоящие из четырех углов и сторон. Можно выделить следующие:

  1. параллелограмм;
  2. квадрат;
  3. прямоугольник;
  4. трапеция;
  5. ромб.

Все эти фигуры объединяет не только то, что они четырехугольные, но и то, что они еще и выпуклые. Достаточно просто рассмотреть схему:

На рисунке изображена выпуклая трапеция . Тут видно, что трапеция находится на одной плоскости или по одну сторону от отрезка . Если провести аналогичные действия, можно выяснить, что и в случае со всеми остальными сторонами трапеция является выпуклой.

Является ли параллелограмм выпуклым четырехугольником?

Выше показано изображение параллелограмма. Как видно из рисунка, параллелограмм также является выпуклым . Если посмотреть на фигуру относительно прямых, на которых лежат отрезки AB, BC, CD и AD, то становится понятно, что она всегда находится на одной плоскости от этих прямых. Основными же признаками параллелограмма является то, что его стороны попарно параллельны и равны так же, как и противоположные углы равны между собой.

Теперь, представьте себе квадрат или прямоугольник. По своим основным свойствам они являются еще и параллелограммами, то есть все их стороны расположены попарно параллельно. Только в случае с прямоугольником длина сторон может быть разной, а углы прямые (равные 90 градусам), квадрат – это прямоугольник, у которого все стороны равны и углы также прямые, а у параллелограмма длины сторон и углы могут быть разными.

В итоге, сумма всех четырех углов четырехугольника должна быть равна 360 градусам . Легче всего это определить по прямоугольнику: все четыре угла прямоугольника прямые, то есть равны 90 градусам. Сумма этих 90-градусных углов дает 360 градусов, другими словами, если сложить 90 градусов 4 раза, получится необходимый результат.

Свойство диагоналей выпуклого четырехугольника

Диагонали выпуклого четырехугольника пересекаются . Действительно, это явление можно наблюдать визуально, достаточно взглянуть на рисунок:

На рисунке слева изображен невыпуклый четырехугольник или четырехсторонник. Как угодно. Как видно, диагонали не пересекаются, по крайней мере, не все. Справа изображен выпуклый четырехугольник. Тут уже наблюдается свойство диагоналей пересекаться. Это же свойство можно считать признаком выпуклости четырехугольника.

Другие свойства и признаки выпуклости четырехугольника

Конкретно по этому термину очень сложно назвать какие-то определенные свойства и признаки. Легче обособить по различным видам четырехугольников такого типа. Начать можно с параллелограмма. Мы уже знаем, что это четырехугольная фигура, стороны которой попарно параллельны и равны. При этом, сюда же включается свойство диагоналей параллелограмма пересекаться между собой, а также сам по себе признак выпуклости фигуры: параллелограмм находится всегда в одной плоскости и по одну сторону относительно любой из своих сторон.

Итак, известны основные признаки и свойства:

  1. сумма углов четырехугольника равна 360 градусам;
  2. диагонали фигур пересекаются в одной точке.

Прямоугольник . Эта фигура имеет все те же свойства и признаки, что и параллелограмм, но при этом все углы его равны 90 градусам. Отсюда и название – прямоугольник.

Квадрат, тот же параллелограмм , но углы его прямые как у прямоугольника. Из-за этого квадрат в редких случаях называют прямоугольником. Но главным отличительным признаком квадрата помимо уже перечисленных выше, является то, что все четыре его стороны равны.

Трапеция – очень интересная фигура . Это тоже четырехугольник и тоже выпуклый. В этой статье трапеция уже рассматривалась на примере рисунка. Понятно, что она тоже выпуклая. Главным отличием, а соответственно признаком трапеции является то, что ее стороны могут быть абсолютно не равны друг другу по длине, а также ее углы по значению. При этом фигура всегда остается на одной плоскости относительно любой из прямых, которая соединяет любые две ее вершины по образующим фигуру отрезкам.

Ромб – не менее интересная фигура . Отчасти ромбом можно считать квадрат. Признаком ромба является тот факт, что его диагонали не только пересекаются, но и делят углы ромба пополам, а сами диагонали пересекаются под прямым углом, то есть, они перпендикулярны. В случае, если длины сторон ромба равны, то диагонали тоже делятся пополам при пересечении.

Дельтоиды или выпуклые ромбоиды (ромбы) могут иметь разную длину сторон. Но при этом все равно сохраняются как основные свойства и признаки самого ромба, так и признаки и свойства выпуклости. То есть, мы можем наблюдать, что диагонали делят углы пополам и пересекаются под прямым углом.

Сегодняшней задачей было рассмотреть и понять, что такое выпуклые четырехугольники, какие они бывают и их основные признаки и свойства. Внимание! Стоит напомнить еще раз, что сумма углов выпуклого четырехугольника равна 360 градусам. Периметр фигур, например, равен сумме длин всех образующих фигуру отрезков. Формулы расчета периметра и площади четырехугольников будут рассмотрены в следующих статьях.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Одна из наиболее интересных тем по геометрии из школьного курса - это «Четырехугольники» (8 класс). Какие виды таких фигур существуют, какими особыми свойствами они обладают? В чем уникальность четырехугольников с углами по девяносто градусов? Давайте разберемся во всем этом.

Какая геометрическая фигура называется четырехугольником

Многоугольники, которые состоят из четырех сторон и, соответственно, из четырех вершин (углов), называются в евклидовой геометрии четырехугольниками.

Интересна история названия этого вида фигур. В российском языке существительное «четырехугольник» образовано от словосочетания «четыре угла» (точно так же, как «треугольник» - три угла, «пятиугольник» - пять углов и т. п.).

Однако на латыни (через посредничество которой пришли многие геометрические термины в большинство языков мира) он называется quadrilateral. Это слово образовано из числительного quadri (четыре) и существительного latus (сторона). Так что можно сделать вывод, что у древних этот многоугольник именовался не иначе как "четырехсторонник".

Кстати, такое название (с упором на наличие у фигур этого вида четырех сторон, а не углов) сохранилось в некоторых современных языках. Например, в английском - quadrilateral и в французском - quadrilatère.

При этом в большинстве славянских языков рассматриваемый вид фигур идентифицируют все так же по количеству углов, а не сторон. Например, в словацком (štvoruholník), в болгарском («четириъгълник»), в белорусском («чатырохкутнік»), в украинском («чотирикутник»), в чешском (čtyřúhelník), но в польском четырехугольник именуют по количеству сторон - czworoboczny.

Какие виды четырехугольников изучаются в школьной программе

В современной геометрии выделяются 4 вида многоугольников с четырьмя сторонами.

Однако из-за слишком сложных свойств некоторых из них на уроках геометрии школьников знакомят только с двумя видами.

  • Параллелограмм (parallelogram). Противолежащие стороны четырехугольника такого попарно параллельны между собой и, соответственно, равны также попарно.
  • Трапеция (trapezium или trapezoid). Этот четырехугольник состоит из двух противолежащих сторон, параллельных между собой. Однако другая пара сторон не имеет такой особенности.

Не изучаемые в школьном курсе геометрии виды четырехугольников

Помимо вышеперечисленных, существуют еще два вида четырехугольников, с которыми школьников не знакомят на уроках геометрии, из-за их особой сложности.

  • Дельтоид (kite) - фигура, в которой каждая из двух пар смежных сторон равна по длине между собою. Свое название такой четырехугольник получил из-за того, что по внешнему виду он довольно сильно напоминает букву греческого алфавита - «дельта».
  • Антипараллелограмм (antiparallelogram) - эта фигура так же сложна, как и ее название. В ней две противоположные стороны равны, но при этом они не параллельны между собою. Кроме того, длинные противоположные стороны этого четырехугольника пересекаются между собой, как и продолжения двух других, более коротких сторон.

Виды параллелограмма

Разобравшись с основными видами четырехугольников, стоит обратить внимание на его подвиды. Так, все параллелограммы, в свою очередь, тоже делятся на четыре группы.

  • Классический параллелограмм.
  • Ромб (rhombus) - четырехугольная фигура с равными сторонами. Ее диагонали пересекаются под прямым углом, деля ромб на четыре равных прямоугольных треугольника.
  • Прямоугольник (rectangle). Название это говорит само за себя. Так как это четырехугольник с прямыми углами (каждый из них равен девяноста градусам). Противоположные стороны его не только параллельны между собою, но и равны.
  • Квадрат (square). Как и прямоугольник, это четырехугольник с прямыми углами, но у него все стороны равны между собой. Этим данная фигура близка к ромбу. Так что можно утверждать, что квадрат - это нечто среднее между ромбом и прямоугольником.

Особые свойства прямоугольника

Рассматривая фигуры, в которых каждый из углов между сторонами, равен девяноста градусам, стоит более внимательно остановиться на прямоугольнике. Итак, какими особенными он обладает признаками, отличающими его от других параллелограммов?

Чтобы утверждать, что рассматриваемый параллелограмм - прямоугольник, его диагонали должны быть равны между собою, а каждый из углов - прямыми. Кроме того, квадрат его диагоналей должен соответствовать сумме квадратов двух смежных сторон этой фигуры. Иными словами, классический прямоугольник состоит из двух прямоугольных треугольников, а в них, как известно, В роли гипотенузы выступает диагональ рассматриваемого четырехугольника.

Последний из перечисленных признаков этой фигуры является также ее особенным свойством. Помимо этого, есть и другие. Например, то, что все стороны изучаемого четырехугольника с прямыми углами - это одновременно и его высоты.

Кроме того, если вокруг любого прямоугольника начертить круг, его диаметр будет равен диагонали вписанной фигуры.

Среди других свойств четырехугольника этого, то, что он является плоским и в неевклидовой геометрии не существует. Это связано с тем, что в такой системе отсутствуют четырехугольные фигуры, сумма углов которых равна трехстах шестидесяти градусам.

Квадрат и его особенности

Разобравшись с признаками и свойствами прямоугольника, стоит обратить внимание на второй известный науке четырехугольник с прямыми углами (это квадрат).

Являясь по факту тем же прямоугольником, но с равными сторонами, эта фигура обладает всеми его свойствами. Но в отличие от него, квадрат присутствует в неевклидовой геометрии.

Кроме этого, у данной фигуры, есть и другие собственные отличительные черты. Например, то, что диагонали квадрата не просто равны между собою, но и пересекаются под прямым углом. Таким образом, как и ромб, квадрат состоит из четырех прямоугольных треугольников, на которые ее делят диагонали.

Помимо этого, данная фигура является самой симметричным среди всех четырехугольников.

Чему равна сумма углов четырехугольника

Рассматривая особенности четырехугольников евклидовой геометрии, стоит обратить внимание на их углы.

Так, в каждой из вышеперечисленных фигур, независимо от того, есть у нее прямые углы или нет, общая сумма их всегда одинакова - триста шестьдесят градусов. Это уникальная отличительная черта этого вида фигур.

Периметр четырехугольников

Разобравшись с тем, чему равна сумма углов четырехугольника и другими особенными свойствами фигур этого вида, стоит узнать, какими формулами лучше всего пользоваться, чтобы вычислить их периметр и площадь.

Чтобы определить периметр любого четырехугольника, нужно лишь сложить между собою длину всех его сторон.

Например, в фигуре KLMN ее периметр можно вычислить по формуле: Р = KL + LM + MN + KN. Если подставить сюда числа, получится: 6 + 8 + 6 + 8 = 28 (см).

В случае когда рассматриваемая фигура - это ромб или квадрат, для нахождения периметра можно упростить формулу, просто помножив длину одной из его сторон на четыре: Р = KL х 4. Например: 6 х 4=24 (см).

Формулы четырехугольников площади

Разобравшись с тем, как найти периметр любого фигуры с четырьмя углами и сторонами, стоит рассмотреть наиболее популярные и простые способы нахождения ее площади.


Другие свойства четырехугольников: вписанные и описанные окружности

Рассмотрев особенности и свойства четырехугольника как фигуры евклидовой геометрии, стоит обратить внимание на возможность описывать вокруг или вписывать внутри него круги:

  • Если суммы противолежащих углов фигуры составляют по сто восемьдесят градусов и попарно равны между собою, то вокруг такого четырехугольника можно свободно описать окружность.
  • Согласно теореме Птолемея, если снаружи многоугольника с четырьмя сторонами описан круг, то произведение его диагоналей равно сумме произведений противоположных сторон данной фигуры. Таким образом, формула будет выглядеть так: КМ х LN = KL х MN + LM х KN.
  • Если построить четырехугольник, в котором суммы противоположных сторон равны между собою, то в него можно вписать круг.

Разобравшись с тем, что такое четырехугольник, что за виды его существуют, какие из них имеют только прямые углы между сторонами и какими свойствами они обладают, стоит запомнить весь этот материал. В особенности формулы нахождения периметра и площади рассмотренных многоугольников. Ведь фигуры такой формы - одни из самых распространенных, и эти знания могут пригодиться для вычислений в реальной жизни.