Главная · Личностный рост · Химические свойства основных классов химических веществ. Какие основные факторы влияют на размещение предприятий химической промышленности? Приведите примеры

Химические свойства основных классов химических веществ. Какие основные факторы влияют на размещение предприятий химической промышленности? Приведите примеры

Классификация веществ Все вещества можно разделить на простые состоящие из атомов одного элемента и сложные – состоящие из атомов различных элементов. Простые вещества делятся на металлы и неметаллы: Металлы – s и d элементы. Неметаллы – p элементы. Сложные вещества делятся на органические и неорганические.

Свойства металлов определяются способностью атомов отдавать свои электроны. Характерный тип химической связи для металлов – металлическая связь. Она характеризуется такими физическими свойствами: ковкость, тягучесть, теплопроводность, электропроводность. При комнатных условиях все металлы кроме ртути находятся в твердом состоянии.

Свойства неметаллов определяются способностью атомов легко принимать электроны и плохо отдавать свои. Неметаллы обладают противоположными металлам физическими свойствами: их кристаллы хрупкие, отсутствует «металлический» блеск, низкие значения теплои электропроводности. Часть неметаллов при комнатных условиях газообразна.

Классификация органических соединений. По строению углеродного скелета: Насыщенные/ненасыщенные Линейные/разветвленные/циклические По наличию функциональных групп: Спирты Кислоты Простые и сложные эфиры Углеводы Альдегиды и кетоны

Оксиды – сложные вещества, молекулы которых состоят из двух элементов, один из которых – кислород в степени окисления -2. Оксиды делятся на солеобразующие и несолеобразующие(безразличные). Солеобразующие оксиды делятся на основные, кислотные и амфотерные.

Основные оксиды – это оксиды, образующие в реакциях с кислотами или кислотными оксидами соли. Основные оксиды образуются металлами с невысокой степенью окисления (+1, +2) – это элементы 1 й и 2 й групп периодической таблицы. Примеры основных оксидов: Na 2 O, Ca. O, Mg. O, Cu. O. Примеры реакций образования солей: Cu. O + 2 HCl Cu. Cl 2 + H 2 O, Mg. O + CO 2 Mg. CO 3.

Основные оксиды Оксиды щелочных и щелочноземельных металлов реагируют с водой, образуя основания: Na 2 O + H 2 O 2 Na. OH Ca. O + H 2 O Ca(OH)2 Оксиды других металлов с водой не реагируют, соответствующие основания получаются косвенным путем.

Кислотные оксиды – это оксиды, образующие в реакциях с основаниями или с основными оксидами соли. Кислотные оксиды образуются элементами – неметаллами и d – элементами в высоких степенях окисления (+5, +6, +7). Примеры кислотных оксидов: N 2 O 5, SO 3, CO 2, Cr. O 3, V 2 O 5. Примеры реакций кислотных оксидов: SO 3 + 2 KOH K 2 SO 4 + H 2 O Ca. O + CO 2 Ca. CO 3

Кислотные оксиды Часть кислотных оксидов реагирует с водой с образованием соответствующих кислот: SO 3 + H 2 O H 2 SO 4 N 2 O 5 + H 2 O 2 HNO 3 Другие кислотные оксиды напрямую с водой не реагируют (Si. O 2 , Te. O 3 , Mo. O 3 , WO 3), соответствующие кислоты получаются косвенным путем. Один из способов получения кислотных оксидов – отнятие воды от соответствующих кислот. Поэтому кислотные оксиды иногда называются «ангидридами» .

Амфотерные оксиды обладают свойствами и кислотных и основных оксидов. С сильными кислотами такие оксиды реагируют как основные, а с сильными основаниями как кислотные: Sn. O + H 2 SO 4 Sn. SO 4 + H 2 O Sn. O + 2 KOH + H 2 O K 2

Способы получения оксидов Окисление простых веществ: 4 Fe + 3 O 2 2 Fe 2 O 3, S + O 2 SO 2. Горение сложных веществ: CH 4 + 2 O 2 CO 2 + 2 H 2 O, 2 SO 2 + O 2 2 SO 3. Термическое разложение солей, оснований и кислот. Примеры соответственно: Ca. CO 3 Ca. O + CO 2, Cd(OH)2 Cd. O + H 2 O, H 2 SO 4 SO 3 + H 2 O.

Номенклатура оксидов Название оксида строится по формуле «оксид + название элемента в родительном падеже» . Если элемент образует несколько оксидов, то после названия в скобках указывают степень окисления элемента. Например: CO – оксид углерода (II), CO 2 – оксид углерода (IV), Na 2 O – оксид натрия. Иногда вместо степени окисления в названии указывается число атомов кислорода: монооксид, диоксид, триокид и т. д.

Гидроксиды – соединения, содержащие в своем составе гидроксогруппу (-OH). В зависимости от прочности связей в ряду Э-O-H гидроксиды делятся на кислоты и основания: У кислот самая слабая связь O-H, поэтому при их диссоциации образуется Э-О- и H+. У оснований самая слабая связь Э-О, поэтому при диссоциации образуются Э+ и OH-. У амфотерных гидроксидов может быть разорвана любая из этих двух связей, в зависимости от природы вещества, с которым реагирует гидроксид.

Кислоты Термин «кислота» в рамках теории электролитической диссоциации имеет следующее определение: Кислоты – это вещества, диссоциирующие в растворах с образованием катионов водорода и анионов кислотного остатка. HA H++AКислоты делятся на сильные и слабые (по способности к диссоциации), на одно-, двух-, и трехосновные (по количеству содержащихся атомов водорода) и на кислородсодержащие и бескислородные. Например: H 2 SO 4 – сильная, двухосновная, кислородсодержащая.

Химические свойства кислот 1. Взаимодействие с основаниями с образованием соли и воды (реакция нейтрализации): H 2 SO 4 + Cu (OH)2 Cu. SO 4 + 2 H 2 O. 2. Взаимодействие с основными и амфотерными оксидами с образованием солей и воды: 2 HNO 3 + Mg. O Mg(NO 3)2 + H 2 O, H 2 SO 4 + Zn. O Zn. SO 4 + H 2 O.

Химические свойства кислот 3. Взаимодействие с металлами. Металлы, стоящие в “Ряду напряжений” до водорода, вытесняют водород из растворов кислот (кроме азотной и концентрированной серной кислот); при этом образуется соль: Zn + 2 HCl Zn. Cl 2 + H 2 Металлы, находящиеся в “Ряду напряжений” после водорода, водород из растворов кислот не вытесняют Cu + 2 HCl ≠.

Химические свойства кислот 4. Некоторые кислоты при нагревании разлагаются: H 2 Si. O 3 H 2 O + Si. O 2 5. Менее летучие кислоты вытесняют более летучие кислоты из их солей: H 2 SO 4 конц + Na. Clтв Na. HSO 4 + HCl 6. Более сильные кислоты вытесняют менее сильные кислоты из растворов их солей: 2 HCl + Na 2 CO 3 2 Na. Cl + H 2 O + CO 2

Номенклатура кислот Названия бескислородных кислот составляют, добавляя к корню русского названия кислотообразующего элемента (или к названию группы атомов, например, CN – циан, CNS – родан) суффикс «-о-» , окончание «водородная» и слово «кислота» . Например: HCl – хлороводородная кислота H 2 S – сероводородная кислота HCN – циановодородная кислота

Номенклатура кислот Названия кислородсодержащих кислот образуются по формуле «название элемента» + «окончание» + «кислота» . Окончание меняется в зависимости от степени окисления кислотообразующего элемента. Окончания «–овая» / «-ная» используются для высших степеней окисления. HCl. O 4 – хлорная кислота. Затем используются окончание «–оватая» . HCl. O 3 – хлорноватая кислота. Затем используется окончание «–истая» . HCl. O 2 – хлористая кислота. Наконец, последнее окончание «-оватистая» HCl. O – хлорноватистая кислота.

Номенклатура кислот Если элемент образует всего две кислородсодержащие кислоты (например сера), то для высшей степени окисления используется окончание «–овая» / «- ная» , а для более низкой окончание «-истая» . Пример для кислот серы: H 2 SO 4 – серная кислота H 2 SO 3 – сернистая кислота

Номенклатура кислот Если один кислотный оксид присоединяет различное количество молекул воды при образовании кислоты, то кислота, содержащая большее количество воды обозначается приставкой «орто-» , а меньшее «мета-» . P 2 O 5 + H 2 O 2 HPO 3 - метафосфорная кислота P 2 O 5 + 3 H 2 O 2 H 3 PO 4 - ортофосфорная кислота.

Основания Термин «основание» в рамках теории электролитической диссоциации имеет следующее определение: Основаниями – это вещества, диссоциирующие в растворах с образованием гидроксид - ионов (OH‾) и ионов металлов. Основания классифицируются на слабые и сильные(по способности к диссоциации), на одно-, двух-, трехкислотные (по количеству гидроксогрупп, которые могут заместиться на кислотный остаток) на растворимые (щелочи) и нерастворимые(по способности растворяться в воде). Например, KOH – сильное, однокислотное, растворимое.

Химические свойства оснований 1. Взаимодействие с кислотами: Ca(OH)2 + H 2 SO 4 Ca. SO 4 + H 2 O 2. Взаимодействие с кислотными оксидами: Ca(OH)2 + CO 2 Ca. CO 3 + H 2 O 3. Взаимодействие с амфотерными оксидами: 2 KOH + Sn. O + H 2 O K 2

Химические свойства оснований 4. Взаимодействие с амфотерными основаниями: 2 Na. OH + Zn(OH)2 Na 2 5. Термическое разложение оснований с образованием оксидов и воды: Ca(OH)2 Ca. O + H 2 O. Гидроксиды щелочных металлов при нагревании не распадаются. 6. Взаимодействие с амфотерными металлами (Zn, Al, Pb, Sn, Be): Zn + 2 Na. OH + 2 H 2 O Na 2 + H 2

Номенклатура оснований Название основания образуется по формуле «гидроксид» + «название металла в родительном падеже» . Если элемент образует несколько гидроксидов, то в скобках указывается его степень окисления. Например Cr(OH)2 – гидроксид хрома (II), Cr(OH)3 – гидроксид хрома (III). Иногда в названии приставкой к слову «гидроксид» указывается количество гидроксогрупп – моногидроксид, дигидроксид, тригидроксид, и т. д.

Соли Термин «основание» в рамках теории электролитической диссоциации имеет следующее определение: Соли - это вещества, диссоциирующие в растворах или в расплавах с образованием положительно заряженных ионов, отличных от ионов водорода, и отрицательно заряженных ионов, отличных от гидроксид – ионов. Соли рассматриваются как продукт частичного или полного замещения атомов водорода на атомы металла или гидроксогрупп на кислотный остаток. Если замещение происходит полностью, то образуется нормальная (средняя) соль. Если замещение происходит частично, то такие соли называются кислыми(имеются атомы водорода), либо основными (имеются гидроксогруппы).

Химические свойства солей 1. Соли вступают в реакции ионного обмена, если при этом образуется осадок, слабый электролит или выделяется газ: с щелочами реагируют соли, катионам металлов которых соответствуют нерастворимые основания: Cu. SO 4 + 2 Na. OH Na 2 SO 4 + Cu (OH)2↓ с кислотами взаимодействуют соли: а) катионы которых образуют с анионом новой кислоты нерастворимую соль: Ba. Cl 2 + H 2 SO 4 Ba. SO 4↓ + 2 HCl б) анионы которой отвечают неустойчивой угольной или какойлибо летучей кислоте (в последнем случае реакция проводится между твердой солью и концентрированной кислотой): Na 2 CO 3 + 2 HCl 2 Na. Cl + H 2 O + CO 2, Na. Clтв + H 2 SO 4 конц Na. HSO 4 + HCl;

Химические свойства солей в) анионы которой отвечают малорастворимой кислоте: Na 2 Si. O 3 + 2 HCl H 2 Si. O 3↓ + 2 Na. Cl г) анионы которой отвечают слабой кислоте: 2 CH 3 COONa + H 2 SO 4 Na 2 SO 4 + 2 CH 3 COOH 2. cоли взаимодействуют между собой, если одна из образующихся новых солей нерастворима или разлагается (полностью гидролизуется) с выделением газа или осадка: Ag. NO 3 + Na. Cl Na. NO 3+ Ag. Cl↓ 2 Al. Cl 3 + 3 Na 2 CO 3 + 3 H 2 O 2 Al (OH)3↓ + 6 Na. Cl + 3 CO 2

Химические свойства солей 3. Соли могут вступать во взаимодействие с металлами, если металл, которому соответствует катион соли, находится в“Ряду напряжений “правее реагирующего свободного металла (более активный металл вытесняет менее активный металл из раствора его соли): Zn + Cu. SO 4 Zn. SO 4 + Cu 4. Некоторые соли разлагаются при нагревании: Ca. CO 3 Ca. O + CO 2 5. Некоторые соли способны реагировать с водой и образовывать кристаллогидраты: Cu. SO 4 + 5 H 2 O Cu. SO 4*5 H 2 O

Химические свойства солей 6. Соли подвергаются гидролизу. Подробно этот процесс будет рассмотрен в дальнейших лекциях. 7. Химические свойства кислых и основных солей отличаются от свойств средних солей тем, что кислые соли вступают также во все реакции, характерные для кислот, а основные соли вступают во все реакции, характерные для оснований. Например: Na. HSO 4 + Na. OH Na 2 SO 4 + H 2 O, Mg. OHCl + HCl Mg. Cl 2 + H 2 O.

Получение солей 1. Взаимодействие основного оксида с кислотой: Cu. O + H 2 SO 4 Cu. SO 4 + H 2 O 2. Взаимодействие металла с солью другого металла: Mg + Zn. Cl 2 Mg. Cl 2 + Zn 3. Взаимодействие металла с кислотой: Mg + 2 HCl Mg. Cl 2 + H 2 4. Взаимодействие основания с кислотным оксидом: Ca(OH)2 + CO 2 Ca. CO 3 + H 2 O 5. Взаимодействие основания с кислотой: Fe(OH)3 + 3 HCl Fe. Cl 3 + 3 H 2 O

Получение солей 6. Взаимодействие соли с основанием: Fe. Cl 2 + 2 KOH Fe(OH)2 + 2 KCl 7. Взаимодействие двух солей: Ba(NO 3)2 + K 2 SO 4 Ba. SO 4 + 2 KNO 3 8. Взаимодействие металла с неметаллом: 2 K + S K 2 S 9. Взаимодействие кислоты с солью: Ca. CO 3 + 2 HCl Ca. Cl 2 + H 2 O + CO 2 10. Взаимодействие кислотного и основного оксидов: Ca. O + CO 2 Ca. CO 3

Номенклатура солей Название средней соли формируется по следующему правилу: «название кислотного остатка в именительном падеже» + «название металла в родительном падеже» . Если металл может входить в состав соли в нескольких степенях окисления, то степень окисления указывается в скобках после названия соли.

Названия кислотных остатков. Для бескислородных кислот название кислотного остатка состоит из корня латинского названия элемента и окончания «ид» . Например: Na 2 S- сульфид натрия, Na. Cl – хлорид натрия. Для кислородсодержащих кислот название остатка состоит из корня латинского названия и нескольких вариантов окончаний.

Названия кислотных остатков. Для кислотного остатка с элементов в высшей степени окисления используется окончание «ат» . Na 2 SO 4 – сульфат натрия. Для кислотного остатка с меньшей степенью окисления (-истая кислота) используется окончание «-ит» . Na 2 SO 3 – сульфит натрия. Для кислотного остатка с еще меньшей степенью окисления (-оватистая кислота) используется приставка «гиппо-» и окончание «-ит» . Na. Cl. O – гиппохлорит натрия.

Названия кислотных остатков. Некоторые кислотные остатки называются историческими названиями Na. Cl. O 4 – перхлорат натрия. К названию кислых солей добавляется приставка «гидро» , и перед ней еще одна приставка, указывающая на число незамещенных (оставшихся) атомов водорода. Например, Na. H 2 PO 4 – дигидроортофосфат натрия. Аналогично к названию металла основных солей добавляется приставка «гидроксо-» . Например, Cr(OH)2 NO 3 – нитрат дигидроксохрома (III).

Названия и формулы кислот и их остатков Формула кислоты Кислотный остаток Название кислотного остатка 2 3 4 Азотная HNO 3 ‾ нитрат Азотистая HNO 2 ‾ нитрит Бромоводородная HBr Br ‾ бромид Йодоводородная HI I‾ йодид Кремниевая H 2 Si. O 32¯ силикат Марганцовая HMn. O 4¯ перманганат Марганцовистая H 2 Mn. O 42¯ манганат Метафосфорная HPO 3¯ H 3 As. O 43¯ Название кислоты 1 Мышьяковая метафосфат арсенат

Формула кислоты Мышьяковистая H 3 As. O 3 Ортофосфорная H 3 PO 4 Название кислоты Пирофосфорная H 4 P 2 O 7 Двухромовая Родановодородная Сернистая Фосфористая Фтороводородная (плавиковая) Хлороводородная (соляная) Хлорная Хлорноватая Хлористая Хлорноватистая Хромовая Циановодородная (синильная) H 2 Cr 2 O 7 HCNS H 2 SO 4 H 2 SO 3 H 3 PO 3 Кислотный Название кислотного остаток остатка As. O 33¯ арсенит PO 43¯ ортофосфат (фосфат) пирофосфат P 2 O 7 4 ¯ (дифосфат) Cr 2 O 72¯ дихромат CNS¯ роданид SO 42¯ сульфат SO 32¯ сульфит PO 33¯ фосфит HF F¯ HCl. O 4 HCl. O 3 HCl. O 2 HCl. O H 2 Cr. O 4 Cl¯ Cl. O 4¯ Cl. O 3¯ Cl. O 2¯ Cl. O¯ Cr. O 42¯ HCN CN¯ фторид хлорид перхлорат хлорит гипохлорит хромат цианид

России и включает химическую и нефтехимическую промышленность , подразделяющиеся на многие отрасли и производства, а также микробиологическую промышленность. Он обеспечивает производство кислот, щелочей, минеральных удобрений, разнообразных полимерных материалов, красителей, бытовой химии, лаков и красок, резино-асбестовой, фотохимической и химико-фармацевтической продукции.

Химической и нефтехимической промышленности свойственны черты, сочетание которых делает эти отрасли уникальными по широте хозяйственного использования их продукции. С одной стороны, продукция комплекса находит применение в качестве сырья и материалов во всех отраслях промышленности (медицинской, микробиологической, радиотехнической, космической, деревообрабатывающей, легкой), в сельском хозяйстве и на транспорте. С другой стороны, процесс переработки химического и нефтехимического сырья в конечный продукт включает большое число технологических стадий передела, что определяет большую долю внутриотраслевого потребления.

Объем отгруженных товаров по виду экономической деятельности “Химическое производство” в 2007 г. составил 67% в выпуске обрабатывающих производств. В отрасли работают 7,6 тыс. предприятий, где занято более 500 тыс. человек.

Объем инвестиций в основной капитал химического комплекса за счет всех источников финансирования с 2000 г. возрос в 6,7 раза. Внешние инвестиции за этот период превысили 3,7 млрд. долл., хотя окупаемость крупного химического проекта составляет 13-26 лет.

Сложившееся размещение химического комплекса имеет ряд особенностей:

  • высокую концентрацию предприятий в европейской части России;
  • сосредоточение центров химической промышленности в районах, дефицитных по водным и энергетическим ресурсам, но концентрирующих основную часть населения и производственного потенциала;
  • территориальное несовпадение районов производства и потребления прдукции химической промышленности;
  • сырьевую базу отрасли, котрая дифференцируется в зависимости от природной и экономической специфики отдельных районов страны.

Наиболее важную роль химическая промышленность играет в хозяйстве Поволжья, Волго-Вятского района, Центрального Черноземья, Урала и Центра. Еще большую значимость отрасль имеет в хозяйстве отдельных регионов, где она выступает основой формирования экономики этих территорий — в Новгородской, Тульской, Пермской областях и Татарии.

Продукция химического комплекса России пользуется большим спросом за рубежом . В 2007 г. объем экспорта химической и нефтехимической продукции составил 20,8 млрд. долл. или 5,9% всего экспорта РФ.

Развитие и размещение химического комплекса обусловлено влиянием ряда факторов

Сырьевой фактор оказывает огромное воздействие на размещение всех отраслей химического комплекса, а для горно-химической промышленности и производства калийных удобрений является определяющим. В себестоимости готовой продукции доля сырья по отдельным производствам составляет от 40 до 90%, что обусловлено или высокими нормами расхода, или его ценностью.

Энергетический фактор особенно важен для промышленности полимерных материалов и отдельных отраслей основной химии. Химический комплекс потребляет около 1/5 энергоресурсов, используемых в промышленности. Повышенной электроемкостью отличается производство синтетического каучука, фосфора путем электровозгонки и азотных удобрений методом электролиза воды, а значительными расходами топлива отличается содовая промышленность.

Водный фактор играет особую роль при размещении предприятий химического комплекса, так как вода используется и для вспомогательных целей и в качестве сырья. Расход воды в отраслях химического комплекса варьируется от 50 м3 при производстве хлора до 6000 м3 при производстве химических волокон.

Потребительский фактор учитывают при размещении прежде всего отраслей основной химии — производстве азотных и фосфатных удобрений, серной кислоты, а также узкоспециализированных предприятий, выпускающих лаки, краски, фармацевтические товары.

Трудовой фактор влияет на размещение трудоемких отраслей химического комплекса, к которым относится производство химических волокон, пластмасс.

Экологический фактор до последнего времени недостаточно учитывался при размещении предприятий химического комплекса. Однако именно эта отрасль является одним из основных загрязнителей окружающей среды среди отраслей промышленности (почти 30% объема загрязненных сточных вод промышленности). Поэтому главным и определяющим для дальнейшего развития и размещения отрасли является трансформация традиционных технологий в малоотходные и ресурсосберегающие, создание замкнутых технологических циклов с полным использованием сырья и не вырабатывающих отходов, выходящих за их рамки.

Инфраструктурный фактор , предполагающий подготовку и обустройство территории к промышленному освоению, особенно важен при размещении промышленных предприятий, главным образом в районах нового освоения.

Состав химического комплекса

В составе химического комплекса можно выделить горно-химическую промышленность, связанную с добычей первичного химического сырья, основную химию, обеспечивающую производство минеральных удобрений, серной кислоты и соды, и промышленность полимерных материалов (включая органический синтез).

Горно-химическая промышленность по объему выпускаемой продукции занимает третье место и включает добычу апатитов, фосфоритов, калийной и поваренной соли, самородной серы, бора, мела и др. Запасы химического сырья в России, являющегося сырьем для производства минеральных удобрений, значительны — по ресурсам калийных солей и фосфатного сырья (апатитов и фосфоритов) страна занимает первое место в мире. Основные запасы химического сырья сосредоточены в европейской части страны. В Восточной зоне крупных и рентабельных месторождений пока не выявлено.

В структуре запасов фосфатного сырья преобладают апатитовые руды, где главную роль играет Хибинская группа в Мурманской области. Почти 90% разведанных запасов калийных солей страны сосредоточено в Верхнекамском месторождении в Пермском крае, где полностью осуществляется добыча этого сырья в России. Поваренные соли представлены на территории Поволжья, Урала, Западной и Восточной Сибири, Дальнего Востока, месторождения серы и серного колчедана — на Урале.

Производство удобрений

Основная химия занимает ведущее место в химическом комплексе по объему выпускаемой продукции. Ее главной отраслью является промышленность минеральных удобрений, которая включает производство азотных, фосфатных и калийных удобрений . В структуре выпуска минеральных удобрений примерно одинаковая доля (более 2/5) приходится на калийные и азотные, 1/6 — на фосфатные. В себестоимости производства минеральных удобрений затраты на исходное сырье, природный газ, электроэнергию и транспорт занимают примерно 70-80%.

Территориальная организация производства минеральных удобрений за последнее десятилетие не претерпела каких-либо изменений. По-прежнему более 95% выпуска минеральных удобрений сосредоточено в Западной зоне страны, где еще более усилилось значение Урала (2/5 общероссийского производства) на фоне сокращения роли Центра, Северо-Запада, Поволжья, Волго-Вятского района.

Современная азотная промышленность основывается на синтезе и последующей переработке аммиака, в себестоимости которого почти 50% затрат приходится на природный газ (как сырье и топливо). При этом определяющим в размещении является либо наличие в районе газовых ресурсов (Невинномысск на Северном Кавказе), либо потребителей готовой продукции — сельского хозяйства — и предприятия размещаются вдоль трасс магистральных газопроводов (Новомосковск в Центральном, Новгород в Северо-Западном, Дзержинск в Волго-Вятском районах). При использовании в качестве сырья коксового газа, который образуется при коксовании угля, предприятия по производству азотных удобрений сооружаются либо в угольных бассейнах (Кемерово, Ангарск), либо вблизи металлургических комбинатов полного цикла (Магнитогорск, Нижний Тагил, Липецк, Череповец).

Калийные удобрения производятся на предприятиях горно-химической промышленности, они объединяют добычу и обогащение калийных руд. На базе Верхнекамского месторождения осуществляется выпуск калийных удобрений на двух крупных предприятиях в Соликамске и Березниках в Пермском крае.

Производство фосфатных удобрений основано на кислотной переработке фосфатного сырья (фосфоритов и апатитов) и осуществляется на 19 предприятиях, расположенных почти во всех европейских районах страны, включая Урал. Определяющим в размещении является наличие потребителя, поэтому предприятия построены в основном в сельскохозяйственных районах: Кингисепп (Северо-Запад), Воскресенск, Новомосковск (Центр), Уварово (Центральное Черноземье), Балаково (Поволжье), Красноуральск (Урал).

Сернокислотная промышленность выпускает продукцию, отличающуюся массовым использованием, особенно в производстве фосфатных удобрений. Сернокислотное производство сосредоточено в европейской части страны, главными районами остаются Европейский Север, Урал и Центр, которые обеспечивают почти 2/3 общероссийского выпуска, несколько меньше — 1/5 — дают Поволжье и Северо-Запад.

Отличительной особенностью содовой промышленности является тяготение к сырьевым базам — месторождениям поваренной соли. Производство каустической и кальцинированной соды относится к материалоемким (на выпуск 1 т готовой продукции расходуется до 5 м3 соляного рассола), здесь широко используют вспомогательные материалы (около 1,5 т известняка на 1 т готовой продукции) и топливно-энергетические ресурсы. Ведущими районами сосредоточения содовой промышленности являются Поволжье, Урал, Восточная Сибирь и Волго-Вятский район, на долю которых приходится свыше 9/10 общероссийского производства каустической и кальцинированной соды.

Промышленность полимерных материалов занимает второе место в химическом комплексе по объему выпускаемой продукции и включает органический синтез (производство углеводородного сырья на базе нефте-, газо- и коксохимии), развивающуюся на его основе полимерную химию (производство синтетического каучука, синтетических смол и пластмасс, химических волокон), а также переработку полимерных изделий (производство резинотехнических изделий, шин, изделий из пластических масс).

Развитие и размещение органического синтеза обусловлено значительной и широко распространенной сырьевой базой, снимающей территориальные ограничения для отрасли. Изначально органический синтез опирался на сырье древесного и сельскохозяйственного происхождения, уголь и был представлен в Кузбассе, Подмосковье, на Урале, а также в европейских районах- потребителях готовой продукции. Сейчас определяющим является наличие нефтегазового сырья.

Среди отраслей полимерной химии наибольшими масштабами выделяется промышленность синтетических смол и пластических масс, которая меньше других пострадала в период рыночных преобразований экономики, объем выпуска ее продукции сократился на 1/5. Наличие углеводородного нефтехимического сырья определяет размещение отрасли и производство приближается к нефтехимическим комбинатам, расположенным в районах добычи нефти или по трассам нефтегазотрубопроводов.

Ожидаемых сдвигов в размещении отрасли в Восточную зону не произошло. За последние 15 лет доля восточных районов в общероссийском выпуске синтетических смол и пластмасс сократилась с 31 до 26% и возросла роль Поволжья (Новокуйбышевск, Волгоград, Волжский, Казань) и Урала (Уфа, Салават, Екатеринбург, Нижний Тагил), которые в 2007 г. обеспечивали производство более 2/5 готовой продукции отрасли. Стабильной остается ситуация в крупнейшем районе потребления — Центральном, где действуют крупные предприятия в Москве, Рязани, Ярославле.

Промышленность химических волокон и нитей по объему выпускаемой продукции полимерной химии занимает второе место и включает производство искусственных (из целлюлозы) и синтетических волокон (из продуктов нефтепереработки).

Промышленность химических волокон и нитей характеризуется высокими нормами расхода сырья, воды, топлива и энергии и ориентируется на районы текстильной промышленности — Центральный (Тверь, Шуя, Клин, Серпухов), Поволжский (Балаково, Саратов, Энгельс). На востоке крупные предприятия действуют в Красноярске, Барнауле, Кемерово.

Промышленность синтетического каучука занимает особое место, так как первые в мире предприятия на базе пищевого сырья были построены еще в начале 1930-х г. ХХ в. в Центральной России. Переход на углеводородное сырье обусловил строительство новых заводов в Поволжье, на Урале, в Западной Сибири.

Помимо высокой материалоемкости отрасль отличается значительной электроемкостью (почти 3 тыс. кВт/ч на 1 т синтетического каучука) и характеризуется известной территориальной рассредоточенностью. Почти 2/3 производства синтетического каучука приходится на европейскую часть, где ведущим районом остается Поволжье (Казань, Тольятти, Нижнекамск). Значительны объемы производства в Центральном (Москва, Ярославль), Центрально-Черноземном (Воронеж) и Уральском (Уфа, Стерлитамак, Пермь) районах. На востоке крупными производителями синтетического каучука остаются Омск (Западная Сибирь) и Красноярск (Восточная Сибирь).

Учитывая ресурсную обеспеченность отдельных территорий и возможности перерабатывающей промышленности крупными комплексами химической промышленности отличаются следующие экономические районы России:
  • Центр, где преобладает полимерная химия (выпуск синтетического каучука, пластмасс, химических волокон), выделяется производство азотных и фосфорных удобрений, серной кислоты, красителей и лаков;
  • Урал, где выпускают все виды минеральных удобрений, соду, серную кислоту, а также синтетический спирт, синтетический каучук, пластмассы из нефти и попутных газов;
  • Северо-Запад поставляет на общероссийский рынок фосфорные удобрения, серную кислоту, продукты полимерной химии (синтетические смолы, пластмассы, химические волокна);
  • Поволжье обеспечивает выпуск разнообразной полимерной продукции на основе органического синтеза (синтетический каучук, химические волокна);
  • Северный Кавказ развивает производство азотных удобрений, органического синтеза, синтетических смол и пластмасс;
  • Сибирь (Западная и Восточная) характеризуется развитием химии органического синтеза и полимерной химии, выпуском азотных удобрений.

Cтраница 1


Основные химические вещества, используемые при ентификации объектов крупной опасности.  

Основными химическими веществами, загрязняющими сточные воды химических цехов, являются: фенол, аммиак, цианиды и роданиды.  

Основными химическими веществами, влиянию которых в настоящее время в производстве стеклопластиков могут подвергаться работающие, являются ненасыщенные полиэфирные смолы, стирол, органические перекиси (в основном, гидроперекись изопропбензола, перекись бензоила), диметил - и диэтиланилины, изопропилбензол, нафтенат кобальта, пыль стеклянного волокна и готового стеклопластика.  

Какие основные химические вещества вызывают раздражение глаз при фотохимическом смоге.  

В табл. 43 приведены некоторые свойства основных химических веществ, применяемых для приготовления флюсов.  

Радиохимическая чистота - это отношение активности радионуклида в основном химическом веществе, составляющем препарат, к общей активности радионуклида в этом препарате, выраженное в процентах.  

Детергенты - это поверхностно-активные вещества (ПАВ), которые употребляются в промышленности и быту как моющие средства и эмульгаторы; они относятся к числу основных химических веществ, загрязняющих поверхностные воды.  

В отношении импортных препаратов следует отметить, что они представляют собой сложные смеси различных соединений с указанием только классовой их принадлежности. Поэтому неизвестно какие основные химические вещества могут выделяться в воздух рабочей зоны и поступать в объекгы окружающей среды. Текущий санитарный контроль за содержанием препаратов в объектах окружающей среды не представляется возможным из-за отсутствия аналитических методов.  

Например, при уменьшении температуры звезды все более отчетливыми становятся спектральные линии, соответствующие CN и СН. При еще более низких температурах основными химическими веществами наряду с TiO становятся гидриды MgH, SiH, А1Н и окислы ZrO, ScO, YO, GO, A1O и ВО.  

Петром I положено начало организации в России первых аптек. В лабораториях при аптеках изготовлялись не только лекарства, там получали и основные химические вещества - серную кислоту, крепкую водку и другие химикалии, необходимые для изготовления ряда лекарственных веществ. Масштаб этих производств был чрезвычайно мал, так как они носили лабораторный характер.  

Это поверхностно-активные вещества (ПАВ), которые употребляются в промышленности и в быту как моющие средства и эмульгаторы; они относятся к числу основных химических веществ, загрязняющих поверхностные воды.  

Система наблюдения за чрезвычайными ситуациями, связанными с опасными веществами фиксирует не все выбросы, так как о небольших проливах или выбросах на предприятиях не докладывают. Реестр был заведен в 1990 году и первоначально включал пять штатов, затем был расширен и теперь охватывает одиннадцать штатов. Данные Системы наблюдения за чрезвычайными ситуациями, связанными с опасными веществами за период между 1990 и 1992 гг., суммирующие типы химических веществ, выброшенные во время чрезвычайных ситуаций, включая и те, от которых пострадал персонал, показывают, что основными химическими веществами были летучие органические соединения, гербициды, кислоты и аммиак. Самый большой риск для персонала представляют собой цианины, инсектициды, хлор, кислоты и основания.  

Без подписи начальника ОТБ ни одному из них пропуск не выдается. Кроме тоговсе инженерносехнические работники связанные с выполнением работ П и Ш категорий, проведением огневых или земляных работ независимо от категории, проведением инструктажа своих рабочих сдают экзамен в комиссии химкомбината и тол ко после этого получают право оформления и руководства такими работами. Не сдавшие экзамена на территорию комбината не допускаются. В специальной программе, отображаю - щей минимум знаний необходимых для сдачи экзамена, узловыми вопросами являются: полное и четкое знание инструкций комбината о порядке проведения огневых и земляных работ а также инструкции по взаимному обеспечению условий безопасности правила поведения рабочих подрядных организаций на территории комбината и режим внутри объекта; правила противопожарного режима на территории комбината, устройство и приемы пользования средствами огне-тушения; назначение, правила пользования и условия применения фильтрующих противогазов; классификация и особенности всех имеющихся к ним коробок; характеристики и свойства основных химических веществ имеющихся в производствах химкомбината. В состав комиссии входят начальник ОТБ химкомбината (председатель), начальники газоспасательной станции и военизированной пожарной части, главный инженер соответствующего управления.  

Химическая промышленность - одна из важнейших отраслей мирового хозяйства, благодаря которой обеспечивается полноценная работа черной и цветной металлургии, строительства, сельского хозяйства, фармацевтики, пищевой промышленности. В современном мире значение химической промышленности очень велико, поскольку ее достижения существенно облегчают жизнь людей.

Общая характеристика

Химическая промышленность основана на переработке сырья химическими способами. Базовыми материалами, которые используются в этой отрасли, является нефть и различное минеральное сырье. Благодаря ей у людей появилась возможность использовать в своем быту пластиковые и пластмассовые изделия, удобрения для сельского хозяйства, лекарственные препараты, бытовую химию и косметику, и многое другое.

Рис. 1. Бытовая химия.

Многие отрасли промышленности нуждаются в химической продукции, благодаря которой происходит активное развитие индустрии. Особое значение химическая промышленность имеет для сельского хозяйства, автомобилестроения и строительства.

Началом развития химической отрасли принято считать начало 17 века, когда произошел промышленный переворот. До этого химия - «наука о веществах» – развивалась крайне медленно, и лишь когда люди научились применять свои знания на практике, все изменилось. Самым первым продуктом химической промышленности стала серная кислота, которая и сейчас остается важнейшим компонентом в химической индустрии.

Рис. 2. Серная кислота.

Для данной отрасли характерны следующие черты:

  • Использование большого количества сырья для изготовления продукции. Это особенно касается каучука, пластмассы, соды, удобрений.
  • Материалы химической промышленности отличаются большим разнообразием.
  • Высокий уровень энергетических расходов.
  • Невысокая трудоемкость в сочетании с потребностью в высококвалифицированных специалистах.
  • Большие капиталовложения. Работа химических предприятий невозможна без сложных конструкций и механизмов.
  • Сложная отраслевая структура.
  • Проблемы экологического характера, связанные с изготовлением химической продукции.

Отрасли химической промышленности

В состав мировой химической промышленности входит множество различных сфер. В настоящее время существует более двухсот различных подотраслей и производств, а ассортимент ее продукции достигает одного миллиона видов.

ТОП-4 статьи которые читают вместе с этой

Основными отраслями химической промышленности являются:

  • Горнохимическая - добыча, переработка и обогащение серы, фосфоритов и различных солей.
  • Базовая - производство неорганических веществ (удобрения, кислоты, сода).
  • Промышленность полимерных материалов - основана на органическом синтезе и включает в себя производства по изготовлению и переработке различных полимеров (пластмасса, смола, каучук).

В эпоху научно-технической революции наибольшее развитие в химической промышленности получило производство полимерных материалов. В качестве сырья для этой продукции используются полуфабрикаты нефтехимии. Полимеры являются важнейшей составляющей частью промышленности и строительства.

Рис. 3. Производство пластмассы.

Сохранение экологии

Активное развитие химической промышленности привело к строительству большого количества производств в крупных и средних населенных пунктах во всем мире.

Вместе с тем лишь малое количество предприятий оснащено малоотходными или полностью безотходными технологиями, современными очистительными сооружениями. Все это привело к возникновению сложной экологической обстановки, особенно в развивающихся странах, где уделяется мало внимания защите окружающей среды.

Для улучшения экологической обстановки в технологические процессы химической промышленности необходимо своевременно внедрять следующие методики :

  • восстановление и окисление с использованием кислорода и азота;
  • мембранная технология, благодаря которой происходит разделение газовых смесей и от жидкости;
  • биотехнология;
  • электрохимические методы.

Что мы узнали?

При изучении темы «Химическая промышленность» мы узнали, насколько большое влияние оказывается химическая индустрия на развитие многих важных отраслей промышленности. Мы выяснили, какие основные черты ей присущи, из каких отраслей она состоит.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 160.

Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH) 2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH 4 + (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH 3 + H 2 O = NH 4 OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH) 3 , Ca(OH) 2 , Fe(OH) 3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1. Действуют на индикаторы . Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4.

5. Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH) 2 = CuO + H 2 O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.