Главная · Здоровье · Криволинейное. Движение тела по криволинейной траектории. Движение по окружности. Характеристики вращательного движения. Центростремительное ускорение

Криволинейное. Движение тела по криволинейной траектории. Движение по окружности. Характеристики вращательного движения. Центростремительное ускорение

При помощи данного урока вы сможете самостоятельно изучить тему «Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью». Вначале мы охарактеризуем прямолинейное и криволинейное движение, рассмотрев, как при этих видах движения связаны вектор скорости и приложенная к телу сила. Далее рассмотрим частный случай, когда происходит движение тела по окружности с постоянной по модулю скоростью.

На предыдущем уроке мы рассмотрели вопросы, связанные с законом всемирного тяготения. Тема сегодняшнего урока тесно связана с этим законом, мы обратимся к равномерному движению тела по окружности.

Ранее мы говорили, что движение - это изменение положения тела в пространстве относительно других тел с течением времени. Движение и направление движения характеризуются в том числе и скоростью. Изменение скорости и сам вид движения связаны с действием силы. Если на тело действует сила, то тело изменяет свою скорость.

Если сила направлена параллельно движению тела, то такое движение будет прямолинейным (рис. 1).

Рис. 1. Прямолинейное движение

Криволинейным будет такое движение, когда скорость тела и сила, приложенная к этому телу, направлены друг относительно друга под некоторым углом (рис. 2). В этом случае скорость будет изменять свое направление.

Рис. 2. Криволинейное движение

Итак, при прямолинейном движении вектор скорости направлен в ту же сторону, что и сила, приложенная к телу. А криволинейным движением является такое движение, когда вектор скорости и сила, приложенная к телу, расположены под некоторым углом друг к другу.

Рассмотрим частный случай криволинейного движения, когда тело движется по окружности с постоянной по модулю скоростью. Когда тело движется по окружности с постоянной скоростью, то меняется только направление скорости. По модулю она остается постоянной, а направление скорости изменяется. Такое изменение скорости приводит к наличию у тела ускорения, которое называется центростремительным .

Рис. 6. Движение по криволинейной траектории

Если траектория движения тела является кривой, то ее можно представить как совокупность движений по дугам окружностей, как это изображено на рис. 6.

На рис. 7 показано, как изменяется направление вектора скорости. Скорость при таком движении направлена по касательной к окружности, по дуге которой движется тело. Таким образом, ее направление непрерывно меняется. Даже если скорость по модулю остается величиной постоянной, изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет направлено к центру окружности. Поэтому оно называется центростремительным.

Почему центростремительное ускорение направлено к центру?

Вспомним, что если тело движется по криволинейной траектории, то его скорость направлена по касательной. Скорость является векторной величиной. У вектора есть численное значение и направление. Скорость по мере движения тела непрерывно меняет свое направление. То есть разность скоростей в различные моменты времени не будет равна нулю (), в отличие от прямолинейного равномерного движения.

Итак, у нас есть изменение скорости за какой-то промежуток времени . Отношение к - это ускорение. Мы приходим к выводу, что, даже если скорость не меняется по модулю, у тела, совершающего равномерное движение по окружности, есть ускорение.

Куда же направлено данное ускорение? Рассмотрим рис. 3. Некоторое тело движется криволинейно (по дуге). Скорость тела в точках 1 и 2 направлена по касательной. Тело движется равномерно, то есть модули скоростей равны: , но направления скоростей не совпадают.

Рис. 3. Движение тела по окружности

Вычтем из скорость и получим вектор . Для этого необходимо соединить начала обоих векторов. Параллельно перенесем вектор в начало вектора . Достраиваем до треугольника. Третья сторона треугольника будет вектором разности скоростей (рис. 4).

Рис. 4. Вектор разности скоростей

Вектор направлен в сторону окружности.

Рассмотрим треугольник, образованный векторами скоростей и вектором разности (рис. 5).

Рис. 5. Треугольник, образованный векторами скоростей

Данный треугольник является равнобедренным (модули скоростей равны). Значит, углы при основании равны. Запишем равенство для суммы углов треугольника:

Выясним, куда направлено ускорение в данной точке траектории. Для этого начнем приближать точку 2 к точке 1. При таком неограниченном прилежании угол будет стремиться к 0, а угол - к . Угол между вектором изменения скорости и вектором самой скорости составляет . Скорость направлена по касательной, а вектор изменения скорости направлен к центру окружности. Значит, ускорение тоже направлено к центру окружности . Именно поэтому данное ускорение носит название центростремительное .

Как найти центростремительное ускорение?

Рассмотрим траекторию, по которой движется тело. В данном случае это дуга окружности (рис. 8).

Рис. 8. Движение тела по окружности

На рисунке представлены два треугольника: треугольник, образованный скоростями, и треугольник, образованный радиусами и вектором перемещения. Если точки 1 и 2 очень близки, то вектор перемещения будет совпадать с вектором пути. Оба треугольника являются равнобедренными с одинаковыми углами при вершине. Таким образом, треугольники подобны. Это значит, что соответствующие стороны треугольников относятся одинаково:

Перемещение равно произведению скорости на время: . Подставив данную формулу, можно получить следующее выражение для центростремительного ускорения:

Угловая скорость обозначается греческой буквой омега (ω), она говорит о том, на какой угол поворачивается тело за единицу времени (рис. 9). Это величина дуги в градусной мере, пройденной телом за некоторое время.

Рис. 9. Угловая скорость

Обратим внимание, что если твердое тело вращается, то угловая скорость для любых точек на этом теле будет величиной постоянной. Ближе точка располагается к центру вращения или дальше - это не важно, т. е. от радиуса не зависит.

Единицей измерения в этом случае будет либо градус в секунду (), либо радиан в секунду (). Часто слово «радиан» не пишут, а пишут просто . Для примера найдем, чему равна угловая скорость Земли. Земля делает полный поворот на за ч, и в этом случае можно говорить о том, что угловая скорость равна:

Также обратите внимание на взаимосвязь угловой и линейной скоростей:

Линейная скорость прямо пропорциональна радиусу. Чем больше радиус, тем больше линейная скорость. Тем самым, удаляясь от центра вращения, мы увеличиваем свою линейную скорость.

Необходимо отметить, что движение по окружности с постоянной скоростью - это частный случай движения. Однако движение по окружности может быть и неравномерным. Скорость может изменяться не только по направлению и оставаться одинаковой по модулю, но и меняться по своему значению, т. е., кроме изменения направления, существует еще изменение модуля скорости. В этом случае мы говорим о так называемом ускоренном движении по окружности.

Что такое радиан?

Существует две единицы измерения углов: градусы и радианы. В физике, как правило, радианная мера угла является основной.

Построим центральный угол , который опирается на дугу длиной .

С прямолинейным движением мы более или менее научились работать на предыдущих уроках, а именно, решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца, и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Для начала определимся, какие принципиальные отличия есть у криволинейного движения (Рис. 1) относительно прямолинейного, и к чему эти отличия приводят.

Рис. 1. Траектория криволинейного движения

Поговорим о том, как удобно описывать движение тела при криволинейном движении.

Можно разбить движение на отдельные участки, на каждом из которых движение можно считать прямолинейным (Рис. 2).

Рис. 2. Разбиение криволинейного движения на поступательные движения

Однако более удобным является следующий подход. Мы представим это движение как совокупность нескольких движений по дугам окружностей (см. Рис. 3.). Обратите внимание, что таких разбиений меньше, чем в предыдущем случае, кроме того, движение по окружности является криволинейным. Кроме того, примеров движения по окружности в природе встречается очень часто. Из этого можно сделать вывод:

Для того чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Рис. 3. Разбиение криволинейного движения на движения по дугам окружностей

Итак, начнем изучение криволинейного движения с изучения равномерного движения по окружности. Давайте разберемся, каковы принципиальные отличия криволинейного движения от прямолинейного. Для начала вспомним, что в девятом классе мы изучили тот факт, что скорость тела при движении по окружности направлена по касательной к траектории. Кстати, этот факт вы можете пронаблюдать на опыте, если посмотрите, как движутся искры при использовании точильного камня.

Рассмотрим движение тела по окружности (Рис. 4).

Рис. 4. Скорость тела при движении по окружности

Обратите внимание, что в данном случае модуль скорости тела в точке А равен модулю скорости тела в точке B.

Однако, вектор не равен вектору . Итак, у нас появляется вектор разности скоростей (см. Рис. 5).

Рис. 5. Разность скоростей в точках A и B.

Причем изменение скорости произошло через некоторое время . Таким образом, мы получаем знакомую комбинацию:

,

это не что иное, как изменение скорости за промежуток времени, или ускорение тела. Можно сделать очень важный вывод:

Движение по криволинейной траектории является ускоренным. Природа этого ускорения – непрерывное изменение направление вектора скорости.

Еще раз отметим, что даже если говорится, что тело равномерно движется по окружности, имеется в виду, что модуль скорости тела не изменяется, однако такое движение всегда является ускоренным, поскольку изменяется направление скорости.

В девятом классе вы изучали, чему равно такое ускорение и как оно направлено (см. Рис. 6). Центростремительное ускорение всегда направлено к центру окружности, по которой движется тело.

Рис. 6.Центростремительное ускорение

Модуль центростремительного ускорения может быть рассчитан по формуле

Переходим к описанию равномерного движения тела по окружности. Договоримся, что скорость , которой вы пользовались по время описания поступательного движения, теперь будет называться линейной скоростью. И под линейной скоростью мы будем понимать мгновенную скорость в точке траектории вращающегося тела.

Рис. 7. Движение точек диска

Рассмотрим диск, который для определенности вращается по часовой стрелке. На его радиусе отметим две точки A и B. И рассмотрим их движение. За некоторое время эти точки переместятся по дугам окружности и станут точками A’ и B’. Очевидно, что точка А совершила большее перемещение, чем точка B. Из этого можно сделать вывод, что чем дальше от оси вращения находится точка, тем с большей линейной скоростью она движется.

Однако, если внимательно посмотреть на точки А и В, можно сказать, что неизменным остался угол , на который они повернулись относительно оси вращения О. Именно угловые характеристики мы и будем использовать для описания движения по окружности. Отметим, что для описания движения по окружности, можно использовать угловые характеристики. Прежде всего, напомним понятие о радианной мере углов.

Угол в 1 радиан – это такой центральный угол, длина дуги которого равна радиусу окружности.

Таким образом, легко заметить, что например угол в равен радиан. И, соответственно, можно перевести любой угол, заданный в градусах, в радианы, умножив его на и поделив на . Угол поворота при вращательном движении аналогичен перемещению при поступательном движении. Заметим, что радиан – это безразмерная величина:

поэтому обозначение «рад» часто опускают.

Начнем рассмотрение движения по окружности с самого простого случая – равномерного движения по окружности. Напомним, что равномерным поступательным движением называется движение, при котором за любые равные промежутки времени тело совершает одинаковые перемещения. Аналогично,

Равномерным движением по окружности называется движение, при котором за любые равные промежутки времени тело поворачивается на одинаковые углы.

Аналогично понятию линейной скорости вводится понятие угловой скорости.

Угловой скоростью называется физическая величина, равная отношению угла, на который повернулось тело ко времени, за которое произошел этот поворот.

Измеряется угловая скорость в радианах в секунду, или просто в обратных секундах.

Найдем связь между угловой скоростью вращения точки и линейной скоростью этой точки.

Рис. 9. Связь между угловой и линейной скоростью

Точка А проходит при вращении дугу длиной S, поворачиваясь при этом на угол φ. Из определения радианной меры угла можно записать, что

Разделим левую и правую части равенства на промежуток времени , за который было совершено перемещение, затем воспользуемся определением угловой и линейной скоростей

.

Обратим внимание, что чем дальше точка находится от оси вращения, тем выше ее угловая и линейная скорость. А точки, расположенные на самой оси вращения, неподвижны. Примером этого может служить карусель: чем ближе вы находитесь к центру карусели, тем легче вам на ней удержаться.

Вспомним, что ранее мы вводили понятия периода и частоты вращения.

Период вращения – время одного полного оборота. Период вращения обозначается буквой и измеряется в секундах в системе СИ:

Частота вращения – число оборотов в единицу времени. Частота обозначается буквой и измеряется в обратных секундах:

Они связаны соотношением:

Существует связь между угловой скоростью и частотой вращения тела. Если вспомнить, что полный оборот равен , легко увидеть, что угловая скорость:

Кроме того, если вспомнить, каким образом мы определили понятие радиана, станет ясно, как связать линейную скорость тела с угловой:

.

Запишем также связь между центростремительным ускорением и этими величинами:

.

Таким образом, мы знаем связь между всеми характеристиками равномерного движения по окружности.

Подытожим. На этом уроке мы начали описывать криволинейное движение. Мы поняли, каким образом можно связать криволинейное движение с движением по окружности. Движение по окружности всегда является ускоренным, а наличие ускорения обуславливает тот факт, что скорость всегда меняет свое направление. Такое ускорение называется центростремительным. Наконец, мы вспомнили некоторые характеристики движения по окружности (линейную скорость, угловую скорость, период и частоту вращения), и нашли соотношения между ними.

Список литературы:

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  2. А. П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
  3. О. Я. Савченко. Задачи по физике. – М.: Наука, 1988.
  4. А. В. Пёрышкин, В. В. Крауклис. Курс физики. Т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Энциклопедия ().
  2. Аyp.ru ().
  3. Википедия ().

Домашнее задание:

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

  1. Задачи 92, 94, 98, 106, 110 сб. задач А. П. Рымкевич изд. 10 ()
  2. Вычислите угловую скорость движения минутной, секундной и часовой стрелок часов. Вычислите центростремительное ускорение, действующее на кончики этих стрелок, если радиус каждой из них равен одному метру.
  3. Рассмотрите следующие вопросы и ответы на них:
  4. Вопрос: Есть ли на поверхности Земли точки, в которых угловая скорость, связанная с суточным вращением Земли, равна нулю?

    Ответ: Есть. Такими точками являются географические полюсы Земли. Скорость в этих точках равна нулю, потому что в этих точках вы будете находиться на оси вращения.

В зависимости от формы траектории, движение делится на прямолинейное и криволинейное. В реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца движение планет, конца стрелки часов по циферблату и т.д.

Рисунок 1. Траектория и перемещение при криволинейном движении

Определение

Криволинейное движение -- это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). При движении по криволинейной траектории вектор перемещения $\overrightarrow{s}$ направлен по хорде (рис. 1), а l -- длина траектории. Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 2).

Рисунок 2. Мгновенная скорость при криволинейном движении

Однако более удобным является следующий подход. Можно представить это движение как совокупность нескольких движений по дугам окружностей (см. рис. 4.). Таких разбиений получится меньше, чем в предыдущем случае, кроме того, движение по окружности само является криволинейным.

Рисунок 4. Разбиение криволинейного движения на движения по дугам окружностей

Вывод

Для того, чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Задачей исследования криволинейного движения материальной точки является составление кинематического уравнения, описывающего это движение и позволяющего по заданным начальным условиям определить все характеристики этого движения.

При криволинейном движении у вектора скорости изменяется направление. При этом может меняться и его модуль, т. е. длина. В этом случае вектор ускорения раскладывается на две составляющие: касательную к траектории и перпендикулярную к траектории (рис. 10). Составляющая называется тангенциальным (касательным) ускорением, составляющая –нормальным (центростремительным) ускорением.

Ускорение при криволинейном движении

Тангенциальное ускорение характеризует быстроту изменения линейной скорости, а нормальное ускорение характеризует быстроту изменения направления движения.

Полное ускорение равно векторной сумме тангенциального и нормального ускорений:

(15)

Модуль полного ускорения равен:

.

Рассмотрим равномерное движение точки по окружности. При этом и . Пусть в рассматриваемый момент времени t точка находится в положении 1 (рис. 11). Спустя время Δt точка окажется в положении 2, пройдя путь Δs , равный дуге 1-2. При этом скорость точки v получает приращение Δv , в результате чего вектор скорости, оставаясь неизменным по величине, повернется на угол Δφ , совпадающий по величине с центральным углом, опирающимся на дугу длиной Δs :

(16)

где R-радиус окружности, по которой движется точка. Найдем приращение вектора скорости Для этого перенесем вектор так, чтобы его начало совпадало с началом вектора . Тогда вектор изобразится отрезком, проведенным из конца вектора в конец вектора . Этот отрезок служит основанием равнобедренного треугольника со сторонами и и углом Δφ при вершине. Если угол Δφ невелик (что выполняется для малых Δt), для сторон этого треугольника можно приближенно написать:

.

Подставляя сюда Δφ из (16), получаем выражение для модуля вектора :

.

Разделив обе части уравнения на Δt и сделав предельный переход, получим величину центростремительного ускорения:

Здесь величины v и R постоянные, поэтому их можно вынести за знак предела. Предел отношения – это модуль скорости Его также называют линейной скоростью.

Радиус кривизны

Радиус окружности R называется радиусом кривизны траектории. Величина, обратная R, называется кривизной траектории:

.

где R - радиус рассматриваемой окружности. Если α есть центральный угол, соответствующий дуге окружности s, то, как известно, между R, α и s имеет место соотношение:

s = Rα . (18)

Понятие радиуса кривизны применимо не только к окружности, но и любой кривой линии. Радиус кривизны (или обратная ему величина – кривизна) характеризует степень изогнутости линии. Чем меньше радиус кривизны (соответственно, чем больше кривизна), тем сильнее изогнута линия. Рассмотрим это понятие подробнее.


Кругом кривизны плоской линии в некоторой точке A называется предельное положение окружности, проходящей через точку А и две другие точки В 1 и В 2 при их бесконечном приближении к точке А (на рис. 12 кривая проведена сплошной линией, а круг кривизны - пунктирной). Радиус круга кривизны дает радиус кривизны рассматриваемой кривой в точке A, а центр этого круга - центр кривизны кривой для той же точки А.

Проведем в точках B 1 и В 2 касательные B 1 D и В 2 Е к окружности, проходящей через точки В 1 , А и B 2 . Нормали к этим касательным B 1 С и В 2 С представят собой радиусы R окружности и пересекутся в ее центре С. Введем угол Δα между нормалями В1С и В 2 С; очевидно, он равен углу между касательными В 1 D и В 2 E. Обозначим участок кривой между точками B 1 и В 2 как Δs. Тогда по формуле (18):

.

Круг кривизны плоской кривой линии

Определение кривизны плоской кривой в разных точках

На рис. 13 изображены круги кривизны плоской линии в разных точках. В точке A 1 , где кривая является более пологой, радиус кривизны больше, чем в точке A 2 , соответственно, кривизна линии в точке A 1 будет меньше, чем в точке A 2 . В точке A 3 кривая является еще более пологой, чем в точках A 1 и A 2 , поэтому радиус кривизны в этой точке будет больше, а кривизна меньше. Кроме того, круг кривизны в точке A 3 лежит по другую сторону кривой. Поэтому величине кривизны в этой точке приписывают знак, противоположный знаку кривизны в точках A 1 и A 2: если кривизну в точках A 1 и A 2 будем считать положительной, то кривизна в точке A 3 будет отрицательной.

Вам хорошо известно, что в зависимости от формы траектории движение делится на прямолинейное и криволинейное . С прямолинейным движением мы научились работать на предыдущих уроках, а именно решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Для начала определимся, какие принципиальные отличия есть у криволинейного движения (рис. 1) относительно прямолинейного и к чему эти отличия приводят.

Рис. 1. Траектория криволинейного движения

Поговорим о том, как удобно описывать движение тела при криволинейном движении.

Можно разбить движение на отдельные участки, на каждом из которых движение можно считать прямолинейным (рис. 2).

Рис. 2. Разбиение криволинейного движения на участки прямолинейного движения

Однако более удобным является следующий подход. Мы представим это движение как совокупность нескольких движений по дугам окружностей (рис. 3). Обратите внимание, что таких разбиений меньше, чем в предыдущем случае, кроме того, движение по окружности является криволинейным. К тому же примеры движения по окружности в природе встречается очень часто. Из этого можно сделать вывод:

Для того чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Рис. 3. Разбиение криволинейного движения на движения по дугам окружностей

Итак, начнем изучение криволинейного движения с изучения равномерного движения по окружности. Давайте разберемся, каковы принципиальные отличия криволинейного движения от прямолинейного. Для начала вспомним, что в девятом классе мы изучили тот факт, что скорость тела при движении по окружности направлена по касательной к траектории (рис. 4). Кстати, этот факт вы можете пронаблюдать на опыте, если посмотрите, как движутся искры при использовании точильного камня.

Рассмотрим движение тела по дуге окружности (рис. 5).

Рис. 5. Скорость тела при движении по окружности

Обратите внимание, что в данном случае модуль скорости тела в точке равен модулю скорости тела в точке :

Однако вектор не равен вектору . Итак, у нас появляется вектор разности скоростей (рис. 6):

Рис. 6. Вектор разности скоростей

Причем изменение скорости произошло через некоторое время . Таким образом, мы получаем знакомую комбинацию:

Это не что иное, как изменение скорости за промежуток времени, или ускорение тела. Можно сделать очень важный вывод:

Движение по криволинейной траектории является ускоренным. Природа этого ускорения – непрерывное изменение направление вектора скорости.

Еще раз отметим, что, даже если говорится, что тело равномерно движется по окружности, имеется в виду, что модуль скорости тела не изменяется. Однако такое движение всегда является ускоренным, поскольку изменяется направление скорости.

В девятом классе вы изучали, чему равно такое ускорение и как оно направлено (рис. 7). Центростремительное ускорение всегда направлено к центру окружности, по которой движется тело.

Рис. 7. Центростремительное ускорение

Модуль центростремительного ускорения может быть рассчитан по формуле:

Переходим к описанию равномерного движения тела по окружности. Договоримся, что скорость , которой вы пользовались по время описания поступательного движения, теперь будет называться линейной скоростью. И под линейной скоростью мы будем понимать мгновенную скорость в точке траектории вращающегося тела.

Рис. 8. Движение точек диска

Рассмотрим диск, который для определенности вращается по часовой стрелке. На его радиусе отметим две точки и (рис. 8). Рассмотрим их движение. За некоторое время эти точки переместятся по дугам окружности и станут точками и . Очевидно, что точка совершила большее перемещение, чем точка . Из этого можно сделать вывод, что чем дальше от оси вращения находится точка, тем с большей линейной скоростью она движется

Однако если внимательно посмотреть на точки и , можно сказать, что неизменным остался угол , на который они повернулись относительно оси вращения . Именно угловые характеристики мы и будем использовать для описания движения по окружности. Отметим, что для описания движения по окружности можно использовать угловые характеристики.

Начнем рассмотрение движения по окружности с самого простого случая – равномерного движения по окружности. Напомним, что равномерным поступательным движением называется движение, при котором за любые равные промежутки времени тело совершает одинаковые перемещения. По аналогии можно дать определение равномерного движения по окружности.

Равномерным движением по окружности называется движение, при котором за любые равные промежутки времени тело поворачивается на одинаковые углы.

Аналогично понятию линейной скорости вводится понятие угловой скорости.

Угловой скоростью равномерного движения ( называется физическая величина, равная отношению угла, на который повернулось тело, ко времени, за которое произошел этот поворот.

В физике чаще всего используется радианная мера угла. Например, угол в равен радиан. Измеряется угловая скорость в радианах в секунду:

Найдем связь между угловой скоростью вращения точки и линейной скоростью этой точки.

Рис. 9. Связь между угловой и линейной скоростью

Точка проходит при вращении дугу длиной , поворачиваясь при этом на угол . Из определения радианной меры угла можно записать:

Разделим левую и правую части равенства на промежуток времени , за который было совершено перемещение, затем воспользуемся определением угловой и линейной скоростей:

Обратим внимание, что чем дальше точка находится от оси вращения, тем выше ее линейная скорость. А точки, расположенные на самой оси вращения, неподвижны. Примером этого может служить карусель: чем ближе вы находитесь к центру карусели, тем легче вам на ней удержаться.

Такая зависимость линейной и угловой скоростей используется в геостационарных спутниках (спутники, которые всегда находятся над одной и той же точкой земной поверхности). Благодаря таким спутникам мы имеем возможность получать телевизионные сигналы.

Вспомним, что ранее мы вводили понятия периода и частоты вращения.

Период вращения – время одного полного оборота. Период вращения обозначается буквой и измеряется в секундах в СИ:

Частота вращения – физическая величина, равная количеству оборотов, которое тело совершает за единицу времени.

Частота обозначается буквой и измеряется в обратных секундах:

Они связаны соотношением:

Существует связь между угловой скоростью и частотой вращения тела. Если вспомнить, что полный оборот равен , легко увидеть, что угловая скорость:

Подставляя эти выражения в зависимость между угловой и линейной скоростью, можно получить зависимость линейной скорости от периода или частоты:

Запишем также связь между центростремительным ускорением и этими величинами:

Таким образом, мы знаем связь между всеми характеристиками равномерного движения по окружности.

Подытожим. На этом уроке мы начали описывать криволинейное движение. Мы поняли, каким образом можно связать криволинейное движение с движением по окружности. Движение по окружности всегда является ускоренным, а наличие ускорения обуславливает тот факт, что скорость всегда меняет свое направление. Такое ускорение называется центростремительным. Наконец, мы вспомнили некоторые характеристики движения по окружности (линейную скорость, угловую скорость, период и частоту вращения) и нашли соотношения между ними.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Аyp.ru ().
  2. Википедия ().

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

  1. Задачи 92, 94, 98, 106, 110 - сб. задач А.П. Рымкевич, изд. 10
  2. Вычислите угловую скорость движения минутной, секундной и часовой стрелок часов. Вычислите центростремительное ускорение, действующее на кончики этих стрелок, если радиус каждой из них равен одному метру.