Главная · Вредные привычки · Обзор состояния российского рынка биотехнологической продукции. Основоположники отечественной биофармацевтики: опытное биотехнологическое производство ИБХ

Обзор состояния российского рынка биотехнологической продукции. Основоположники отечественной биофармацевтики: опытное биотехнологическое производство ИБХ

\Обзор состояния российского рынка биотехнологической продукции

Бурное развитие биологии в конце 20 века, возникновение генной и кле­точной инженерии, а затем геномики и протеомики, привело к созданию новых биотехнологий, способных обеспечить полноценным питанием все население Земли, покончить с инфекционными заболеваниями, создать новую медицину, направленную на предотвращение развития болезней. Сегодня изменяется от­ношение к фундаментальной биологии. С одной стороны ее достижения мгно­венно используются для создания новых лекарственных препаратов, средств ди­агностики, в различных сферах хозяйственной деятельности, с другой все новые биотехнологии являются настолько наукоемкими, что фирмы, активно разви­вающие их, являются по существу научно-производственными комплексами, ве­дущими собственные не только прикладные, но и фундаментальные исследова­ния.

Сегодня биоиндустрия является одной из наиболее наукоемких отраслей про­мышленности в мире. Ее специфика - тесная связь фундаментальных иссле­дований и сопутствующих им прикладных разработок. Зачастую между ними нет временного разрыва: к промышленному освоению нового биотехнологи­ческого процесса и производству готовой продукции биоиндустрии присту­пают практически одновременно.

Биоиндустрию нельзя в настоящее время рассматривать как единую от­расль: ее процессы и продукты рассредоточены практически одновременно в химических, пищевых, энергетических и других производствах, и рынок продуктов биотехнологии весьма обширен. Это является причиной значи­тельных расхождений в оценках рынков биотехнологической продукции.

Общий объем, потребляемой в России, биотехнологической продукции составил в 2001 году около 45 млрд. руб. На отечественное производство приходится примерно 25-30 %. (чуть более 12 млрд. руб.). Основная масса рынка России удовлетворяется за счет импортных поставок. Объем таких поставок достигает примерно 33 млрд. руб. Емкость российского рынка мож­но предварительно оценить в 90-100 млрд. руб., то есть потребности рынка биотехнологической продукции удовлетворяются в настоящее время на 40-45 %, в том числе за счет отечественных производителей примерно 12-13%. В частности, степень удовлетворения потребностей рынка в фармацевтической биотехнологии составляет 51,3%, в пищевых и кормовых добавках – от 22 до 40%, в остальных отраслях – и того меньше.

Биотехнологические процессы используются в различных отраслях про­мышленности, в сельском хозяйстве , при производстве широкого спектра това­ров и услуг, поэтому биотехнологическая промышленность сильно диверсифи­цирована .

Наиболее бурно развивающейся отраслью биотехнологии является меди­цинская биотехнология. Мировой рынок фармацевтической биотехнологической продукции представлен классическими биотехнологическими продуктами - ан­тибиотиками, витаминами , вакцинами , ферментами и аминокислотами; а также т. н. «новейшими биотехнологиями» - генноинженерными лекарственными пре­паратами и вакцинами и диагностическими средствами нового поколения.

Номенклатура фармацевтических препаратов, получаемых с помощью биотехнологий, в России значительно уже мировой, и представлена нижесле­дующими препаратами.

Антибиотики.

В СССР производство антибиотиков базировалось на штаммах отечест­венной селекции, объемы производства составляли свыше 3000 т/год и обеспе­чивали антибиотиками все республики бывшего Союза и страны соцлагеря. К настоящему времени выпуск субстанций антибиотиков сократился в 4 раза, а го­товых форм для инъекций - в 2,2 раза. Общий объем производства отечествен­ных антибиотиков в 2000 году составил чуть более 1 тысячи тонн.

Иммунобиологические препараты.

На предприятиях Российской Федерации выпускается около 500 медицин­ских иммунобиологических препаратов. Отечественные препараты вакцин, ана­токсинов, иммуноглобулинов и альбуминов , бактериофагов, аллергены , интер-фероны, разновидности иммунодиагностиков и тест-систем, препараты нормоф-лоры часто не уступают по качеству зарубежной продукции. На сегодня, около 40 предприятий разных ведомств имеют лицензию на право производства МИБП. Производственных мощностей этих предприятий достаточно для обес­печения учреждений здравоохранения и санитарно-эпидемиологической службы основной номенклатурой МИБП.

Наиболее высококачественную и конкурентоспособную на внешнем рын­ке продукцию производят организации, представляющие собой единый ком­плекс научно-исследовательского института и мощной производственной базы, как, например, ВНИИ защиты животных (п. Юрьевец), ветеринарный институт (г. Казань), а также Институт полиомиелита и вирусных энцефалитов им. . Стимулирование создания и развития, подобных научно-производственных центров должно стать одним из приоритетных направлений государственной политики, первым шагом в этом направлении могло бы быть уточнение правового статуса этих учреждений.

Генно-инженерные лечебно-профилактические препараты.

Исследования по генной инженерии, проводимые ранее широким фрон­том, позволили сконструировать продуценты десятков белков, продвинуться в технике ведения культур клеток и разработать технологию получения ряда пре­паратов.

В настоящее время предприятиями, созданными на базе ведущих науч­ных учреждений, налажен выпуск 4 генно-инженерных лекарственных препара­тов и 1 генно-инженерной вакцины.

Для организации промышленного производства этих препаратов не нуж­но больших производственных площадей, но требуется высокая технологическая культура.

Разработка технологии производства отечественного инсулина (потреб­ность страны, в котором составляет 200 кг субстанции в год и пока полностью покрывается за счет импорта) находится на стадии клинических испытаний (РАО «Биопрепарат»).

Диагностические средства in vitro.

В настоящее время в основном используются два вида иммунодиагности – иммуноферментный анализ и ДНК-диагностика. Иммунодиагностические тесты более распространены, чем ДНК-диагностика. Однако в последние 2-3 го­да рынок ДНК-диагностики активно растет, возникает новый вид биотехнологи­ческих компаний - геномные компании, появляются новые виды ДНК-диагностики - макро - и микроматрицы (биологические микрочипы). Рынок ДНК-диагностики развивается более динамично и в ближайшие годы превысит рынок иммунодиагностики

В России рынок ДНК-диагностики ориентирован, в основном, на платный сектор медицины. Объем рынка полностью покрывается отечественными произ­водителями. Отечественные системы ДНК-диагностики (ПЦР-диагностика) не уступают зарубежным аналогам по качеству, но в раз дешевле. Некоторые отечественные производители ферментов для ДНК-диагностики поставляют свою продукцию ведущим западным фирмам.

Постоянное совершенствование и расширение возможностей ДНК-диагностики уже сегодня позволяет использовать ее для решения проблем прак­тического здравоохранения, не решаемых с помощью имеющихся методов (на­пример, экспресс-диагностика новых форм туберкулеза). Развитие методов ДНК-диагностики и расширение спектра их использования в здравоохранении и ветеринарии должно занять достойное место в государственной политике под­держки биотехнологии.

Таким образом, общий объем выпуска фармацевтической биотехнологи­ческой продукции в 2000 г. составил приблизительно. 6,0 млрд. руб. В него не включена продукция, выпускаемая вновь созданными негосударственными предприятиями (в основном малыми), так как существующий порядок сбора ста­тистической отчетности не предусматривает представления ими данных об объ­емах и номенклатуре своего производства.

В последние годы в мире быстро растет производство лекарств и космети­ческих средств на основе натурального растительного сырья. Этот рынок актив­но развивается и в России. Так Государственный реестр лекарственных препара­тов из растительного сырья постоянно пополняется новыми препаратами, сейчас в него внесено более 600 наименований. По мнению экспертов, данный сектор имеет хорошие перспективы развития. Отмечается высокая конкурентоспособ­ность отечественной продукции, основанной на местном сырье и на традициях народной медицины . Однако насыщенность рынка этими препаратами составля­ет 25-30%. Возможно вследствие того, что многие подобные препараты регист­рируются как пищевые добавки.

Среди участников ежегодных выставок «Инновации в биотехнологии», примерно половина участников - фирмы-производители косметических средств и витаминных пищевых добавок из растительного сырья. Так как эти предпри­ятия являются частными или акционерными обществами , точные статистические данные об объемах их производств отсутствуют.

Определяя в целом сегодняшнее состояние биотехнологических про­изводств и используемых ими технологий, следует отметить, что при общем спаде объемов производства, номенклатура и разнообразие продуктов с исполь­зованием биотехнологий на российском рынке резко возросли. Необычайно воз­росший спрос на продукцию новых категорий создает основу для развития оте­чественных средних и малых биотехнологических предприятий, ориентирован­ных на выпуск продукции широкой номенклатуры.

Реальный возврат вложенных средств и получение прибыли на данном этапе возможен только от высокорентабельных предприятий, ориентированных на медицинскую, фармацевтическую, пищевую промышленности , сельское хо­зяйство и природоохранные мероприятия. Следует, однако, учитывать, что ранее существовавшие требования к качеству продукции, морально устарели. В со­временных условиях качество должно отвечать мировым стандартам и обеспечивать конкурентоспособность с импортными продуктами Последнее возможно при совершенствовании технологий с использованием оборудования нового по­коления. Только это может облегчить выход российской биотехнологической продукции на мировой рынок.

В связи с последними событиями у всех на слуху слово «импортозамещение». Его применяют к месту и не к месту, под него выделяют огромное финансирование. Но мало кто помнит тех, кто ещё 10 лет назад были первопроходцами в деле реального создания конкурентоспособных технологий. Одним из таких центров является Опытное биотехнологическое производство ИБХ РАН, где в 2003 году начали выпуск генно-инженерного инсулина человека по первой в России технологии полного цикла, за что работавшие над этим сотрудники в 2006 году были удостоены премии Правительства РФ в области науки и техники. И с тех пор в ОБП был разработан целый ряд технологий производства биологических препаратов. Каких и в чём вообще заключается разработка - читайте в этой статье.

Обычно выделяют четыре «цветных» направления биотехнологии: «красная», «синяя», «белая» и «зелёная». «Белая» - промышленная - является одной из самых старых отраслей. Она занимается крупнотоннажным производством различных химических соединений, применяемых в быту: витаминов, спирта и т.д. «Синяя» - морская - занимается приложением биотехнологии к проблемам рационального использования ресурсов океанов. К весьма перспективным направлениям относят «зелёную» отрасль - растительную, в которой генетически модифицируют деревья и сельхозкультуры, а также разрабатывают методы переработки растительного сырья и отходов в полезную для промышленности продукцию. В этом она близка «белой» и по сути является её развитием на более высоком уровне. Но больше всего развито «красное» направление, в котором создаётся продукция для медицинского применения, в основном - биофармацевтические препараты.

Страницы истории

Начало становлению медицинской биотехнологии было положено давно, ещё в начале 70-х годов прошлого века с изобретения технологии рекомбинантной ДНК . А уже в 1982 году был зарегистрирован первый препарат, полученный таким способом - инсулин. В Советском Союзе понимали перспективы этого нового направления, и по настоянию академика Ю.А. Овчинникова, директора , в открытом в 1984 году новом здании института целых два корпуса было выделено под комплексную опытную установку. Основной её задачей являлась разработка технологий получения фармпрепаратов, в особенности биотехнологической природы. Оснащение для тех лет было вполне на мировом уровне, однако перестройка и развал Советского Союза наложили негативный отпечаток - в 90-е годы опытная установка стала не нужна, и большинство специалистов ушло.

Технология рекомбинантной ДНК

Осенью на «биомолекуле» мы опубликовали статью студентки Пермского государственного национального исследовательского университета « » . И хотя речь в ней не о разработке препарата для крупной промышленности, статья даёт представление обо всех этапах получения патента на определённый штамм микроорганизма, созданный биотехнологическим путём. - Ред.

Для задач непосредственно производства создаётся специальный рабочий банк из сотен ампул, каждая из которых предназначена для получения отдельной партии препарата. Этот банк также закладывается на хранение в музей культур (рис. 2).

Далее проводится разработка основной биотехнологической стадии - культивирования клеток. В её ходе выбирают оптимальный состав среды, на которой выращивают клетки, режим культивирования (непрерывный или периодический), его аппаратурное оформление и параметры (pH, температура, скорость подачи и состав подпитки). Основная цель, преследуемая на этом этапе, - повышение объёмной продуктивности, что позволяет получать на оборудовании небольшого масштаба большое количество продукта, достаточное для решения испытательной задачи. Кроме того, за счёт этого снижается и себестоимость получения продукта - в десятки, а то и сотни раз от первоначального лабораторного способа. Решением всех этих задач занимается цех экспериментальной ферментации опытного производства (рис. 3).

Рисунок 3. Контроль за ходом процесса в пилотном ферментёре рабочим объёмом 20 л в цехе экспериментальной ферментации.

В конце культивирования получается культуральная жидкость, содержащая помимо отработанной среды и биомассы клеток ещё и продукт, который необходимо выделить. В зависимости от выбранного вида клеток, продукт может либо выделяться в среду, либо синтезироваться внутри клеток, иногда в виде телец включения (агрегатов из белков). А если смотреть шире, то в случае клеточной или тканевой терапии продуктом будут сами клетки. При выделении сначала отделяют клетки (биомассу) от отработанной среды. Если продукт содержится в среде, то в работу идёт она, а клетки направляют на дезактивацию (в отходы).

Если же продукт получается в тельцах включения, то дезактивируют среду, а клетки разрушают, выделяют тельца и растворяют (солюбилизируют) их. Полученный раствор помимо продукта содержит ещё и белки, выделяемые клетками в среду или синтезирующиеся в виде телец включения, так что для достижения «фармацевтической» степени чистоты требуется несколько ступеней очистки. Чаще всего это несколько (от двух) различных типов хроматографических процессов: ионообменного, гидрофобного, обращённо-фазового, гель-фильтрационного (рис. 4). Для каждого продукта их последовательность и количество будут разные и требуют подбора на основе литературных данных, опыта и экспериментов. Кроме того, для каждого процесса нужно выбирать буферные растворы и стратегию их подачи на хроматографическую колонну. Конечная цель - это продукт высочайшей степени чистоты: иногда более 99,9%, а это означает, что все возможные примеси могут составлять не более 0,1% от массы активной фармацевтической субстанции - результата этой стадии. Очисткой и разработкой её стратегии в рамках опытного биотехнологического производства занимается цех выделения и очистки .

Рисунок 4. Производственное оборудование. Слева: Препаративный хроматограф и буферные растворы, применяемые для крупномасштабной очистки биопрепаратов. Справа: Кристаллизация инсулина в цехе выделения и очистки.

Однако для проведения доклинических и клинических исследований субстанции недостаточно, необходимо ещё изготовить готовую лекарственную форму (ГЛФ) - добавить вспомогательные вещества и упаковать во флаконы или картриджи для шприц-ручек. И если способ упаковки в основном зависит от аппаратного оформления конкретного производства, то вспомогательные вещества в большей степени зависят от препарата и для каждого подбираются отдельно. Хотя здесь не требуется сложных статистических методов и большого количества экспериментов, процесс получения ГЛФ довольно трудоёмкий, и им также занимается отдельное подразделение - цех готовых лекарственных форм (рис. 5).

Немного о терминах

Когда говорят о фармпрепаратах, часто произносят два термина: активная фармацевтическая субстанция (АФС) и готовая лекарственная форма (ГЛФ). АФС или просто субстанция - по сути, главное действующее вещество, которое и отвечает за основной эффект препарата. ГЛФ или готовая форма - это АФС вместе со вспомогательными веществами и в определённом виде: таблетки, капсулы, раствора во флаконе или картридже.

Рисунок 5. Работа в «чистой» зоне. Слева: Разлив готовой формы биопрепарата в цехе готовых лекарственных форм. Справа: Контроль процесса разлива в цехе готовых лекарственных форм. Эффектный комбинезон совсем не для того, чтобы смотреться круто. Конечную форму производят в стерильных условиях в крайне чистой среде. Чтобы в окружающую среду не попадало лишних частиц, все части тела изолируются, а вся косметика перед входом в чистую зону смывается. Работать в таких условиях весьма непросто - несколько часов, и ты уже готов одним махом опустошить полуторалитровую бутылку воды. Не говоря уже о том, что всё это время ты будешь мечтать о дýше.

Казалось бы, дойдя уже до готовой формы, можно переходить непосредственно к доклиническим исследованиям, ведь именно это чаще всего является целью производства лекарственных веществ на мощностях ОБП. Однако прежде необходимо проанализировать полученный продукт, чтобы убедиться в соответствии его характеристик ожидаемым и заложить конкретные параметры в регистрационное досье, которое необходимо для регистрации препарата в регуляторных органах. На данном этапе важно показать, что количество примесей не превышает разрешённого, а полученное основное действующее вещество имеет структуру и активность, соответствующие ожидаемым. Спектр применяемых здесь методов довольно широк: вестерн-блот , изоэлектрофокусировка , хроматография, ЛАЛ-тест , масс-спектрометрия, имунноферментный анализ , ИК-спектроскопия и многие другие. Выбор конкретных методов зависит в первую очередь от природы биопрепарата и для каждого из них во многом индивидуален. Хотя есть и стандартные общие методы вроде электрофореза в полиакриламидном геле или изоэлектрофокусировки. В большинстве же методов, пусть они и являются стандартными в части общей последовательности действий, параметры проведения нуждаются в отдельной проработке для каждой готовой формы, так как вспомогательные вещества иногда влияют на аналитические характеристики основного.

Описанный этап является крайне важным, так как даёт оценку качественным характеристикам препарата и их постоянству от партии к партии. Технология - это не только получение какого-то конкретного продукта и достижение высокой эффективности процесса. Это ещё и умение стабильно обеспечивать высокое качество продукта. Помимо контроля конечного продукта осуществляют промежуточный контроль критических точек производственного процесса, чтобы как можно раньше выявить отклонения, способные повлиять на качество конечного препарата, и минимизировать время и затраты на их устранение. На опытном биотехнологическом производстве за этот этап отвечает отдел контроля качества при участии контрольно-аналитической лаборатории (рис. 6).

Рисунок 6. Важен контроль! Слева: Контрольно-аналитическая лаборатория - все в сборе. Справа: Микробиологический контроль образцов с производства в отделе контроля качества.

Разведка боем

Занимаясь биотехнологией, ты вынужден постоянно знакомиться с новыми передовыми научными достижениями в разных областях: молекулярной биологии, синтетической биологии, химическом приборостроении, IT и многих других. При правильном сочетании полученных знаний и рождается эффективная технология. Это трудный, кропотливый, но очень увлекательный процесс.

Но самые сильные, ни с чем, пожалуй, несравнимые чувства испытываешь, когда, используя инструментарий, созданный природой в ходе эволюции и модифицированный с помощью технологии рекомбинантной ДНК, удается получить конкретный лекарственный препарат, который, возможно, кому-то облегчит состояние, а кого-то и спасет. Это просто круто!

Сотрудник группы эукариотических продуцентов Даниил Павленко раскрывает этот вопрос несколько иначе:

Меня всегда привлекало ориентированное на практику творчество. Создание чего-то, что не просто работает, но ещё и делает это эффективно, т.е. с затратой минимума ресурсов, дарит массу положительных эмоций. Биотех хорош тем, что здесь простор для творчества просто огромен: можно заниматься разработкой сред для выращивания культур, можно основательно вложиться в разработку классного вектора, можно подбирать оптимальные настройки аппаратного обеспечения, можно менять метаболизм клеток-продуцентов, а уж какой простор открывается, если заняться созданием уникальных аппаратов и технологических линий!.. Впечатляют и возможные результаты: комбинация всех подходов может привести к понижению себестоимости производства на порядок, а то и два. Так, мы в своей технологии получения фолликул-стимулирующего гормона определенным изменением достигли увеличения продуктивности, а, следовательно, и уменьшения себестоимости, в 3,5 раза. И понимаем, куда надо двигаться, чтобы повысить продуктивность ещё раз в 5–10. Не удивительно, что от этого всего захватывает дух.

За науку

В прикладных исследованиях научные публикации - дело пусть и не десятое, но явно отходящее на второй план. Основными результатами деятельности являются патенты, ноу-хау, регламенты на конкретные препараты. Статьи же по прикладным исследованиям обычно публикуются в специализированных журналах с соответствующей тематикой, импакт-фактор у которых обычно не переваливает за 3. С фундаментальными исследованиями здесь конкурировать не выйдет, но это не значит, что на опытном производстве науки нет совсем. Например, коллективом ОБП были обнаружены такие явления как антимикробное действие шиконина или эффект вытеснения при очистке генно-инженерного инсулина человека. Хотя большинство статей посвящено разработке отдельных производственных стадий, методов анализа или целых технологий .

Не только работа

Несмотря на серьёзность задач и практическую ориентированность, сотрудники ОБП - живые люди и не прочь поболтать «за жизнь». Собираются обычно пятничными вечерами в кабинете начальника производства Василия Степаненко, который, понимая, что задуманное на остаток дня ему завершить уже не дадут, также включается в беседу. Хотя и тут всё начинается с обсуждения текущих дел и задач и, перетекая в обсуждение стратегии и состояния дел в России и мире, в итоге выходит на разговор о философских и мировоззренческих вопросах.

Обучение без отрыва от производства

Несмотря на высокий уровень ответственности, на ОБП есть успешный опыт выполнения работ студентами и аспирантами с защитой ими магистерских и кандидатских диссертаций. В основном на базе ОБП выполнялись работы вроде создания схем отдельных этапов в производстве какого-либо препарата, подбора условий проведения процессов с целью увеличения выхода, разработки и валидации аналитических методик. Но помимо задач, связанных непосредственно с разработкой технологий создания биологических препаратов, позиционирование производства как опытного подразумевает и возможность отработки различных технических решений. Так, сейчас начато сотрудничество с Университетом машиностроения по направлению разработки различных приборов и аппаратов, применяемых в биотехнологическом производстве.

При этом идей, куда можно двигаться, и каким будет будущее «красной» биотехнологии, предостаточно. Если смотреть глобально, то есть несколько возможных направлений:

В каком направлении всё двинется? Пока сказать сложно, но во многом это будет зависеть от молодёжи, полной прорывных идей и мотивации к созиданию нового.

Литература

  1. Полякова М. (2010). Несахарное производство . Сайт ИБХ ;
  2. Молекулярное клонирование, или как засунуть в клетку чужеродный генетический материал ;
  3. Прикладная биотехнология и молекулярная микробиология. Практическое руководство для студентов, или как запатентовать биопрепарат ;
  4. Karyagina T.B., Arzumanyan V.G., Timchenko T.V., Bairamashvili D.I. (2001). Antimicrobial activity of shikonin preparations . Pharm. Chem. J. 35 , 435–436;
  5. Gusarov D., Nekipelova V., Gusarova V., Lasman V., Bairamashvili D. (2009). Displacement effect during HPLC preparative purification of human insulin . J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 877 , 1216–1220;
  6. Gusarov D.A., Sokolova I.V., Gusarova V.D., Evteeva E.A., Vorob’eva T.V., Kosarev S.A. (2012). Development of effective pilot-scale technology for producing N,N-bis-met-histone H1.3 used for lymphoma treatment . Pharm. Chem. J. 46 , 234–240;
  7. Urmantseva V.V., Gaevskaya O.A., Karyagina T.B., Bairamashvili D.I. (2005). The effect of amino acids as components of nutrient medium on the accumulation of protoberberine alkaloids in the cell culture of Thalictrum minus . Russ. J. Plant Physiol. 52 , 388–391;
  8. Gusarova V., Vorobjeva T., Gusarov D., Lasman V., Bayramashvili D. (2007). Size-exclusion chromatography based on silica-diol for the analysis of the proinsulin fusion protein . J. Chromatogr. A. 1176 , 157–162;
  9. Zhang Y.H. (2010). Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities . Biotechnol. Bioeng. 105 , 663–677;

Введение

В ряду основных направлений современной постиндустриальной экономики особое место занимают биотехнологии. К 2015 году, по оценкам ряда экспертов, 25% химической продукции будет производиться с применением биотехнологий, одновременно ожидается бурное развитие производства топлива на основе биотехнологий. Биотехнология - это использование в производственных целях живых организмов и биологических процессов. С помощью живых организмов можно производить компоненты медицинских препаратов, продукцию для сельского хозяйства, различных отраслей промышленности, можно даже производить топливо - спирт, биогаз и водород. Биотехнологическую промышленность нашей страны не обошел стороной глубокий экономический кризис 1990-х годов. Если СССР выпускал 3-5% мировой продукции биотехнологической отрасли, то Российская Федерация сейчас производит менее 1% мирового объема такой продукции. В России нет пока ни одного крупного производства на основе биотехнологий. Однако, несмотря ни на что, основы для роста этой отрасли у нас имеются. Например, в подмосковных Химках, с привлечением инвестиций как из России, так и из-за рубежа, был создан Центр высоких технологий компании «ХимРар», специализирующийся на разработке новых видов лекарств. Биотехнологии постепенно находят свое применение на российских предприятиях. Так, золотодобывающая компания «Полюс» освоила бактериальное выщелачивание золота из труднообогатимых руд. Таких руд много в Восточной Сибири, и биотехнология может сделать рентабельным их разработку .

Российский рынок биотехнологии

Текущее состояние биотехнологии в Российской Федерации характеризуется, с одной стороны, отставанием объемов производства от уровня и темпов роста стран, являющихся технологическими лидерами в этой области, а с другой – возрастающим спросом на биотехнологическую продукцию со стороны потребителей.

Результатом является высокая импортозависимость по важнейшим традиционным биотехнологическим продуктам - лекарственным препаратам и кормовым добавкам, и отсутствие на российском рынке собственных инновационных биотехнологических продуктов.

"Красные" биотехнологии (биофармацефтика)

Красная биотехнология (медицина) считается важнейшей сферой использования биотехнологий. Биотехнологический метод играет все большую роль для разработки новых медикаментов (например, для лечения рака).

Российский рынок продукции "красной" биотехнологии является наиболее емким в денежном выражении. Его объем составляет, по экспертным оценкам, от 60 до 90 млрд. руб . в год, но спрос удовлетворяется главным образом за счет импорта. По данным Министерства промышленности и торговли Российской Федерации, только 5% биотехнологических субстанций, используемых при производстве конечных лекарственных форм, производится в России.

Учитывая общее технологическое отставание отрасли и высокую капиталоемкость исследований в области "красной" биотехнологии, развитие сектора в России идет по пути создания новых высокотехнологичных производств по выпуску биотехнологических дженериков для обеспечения импортозамещения лекарственной продукции.

В настоящее время в России реализуются следующие крупные проекты в сфере биофармацевтики:

1. ЗАО "Генериум" (Владимирская область) – проект строительства биотехнологического научно-производственного комплекса по производству препаратов для лечения заболеваний крови. Объем инвестиций – 2 млрд. руб. (осуществлено 600 млн. руб.). После выхода на проектную мощность планируется разрабатывать и выводить на рынок до 10 новых биотехнологических препаратов ежегодно. Ожидаемый объем производства – 2.7 млрд. руб. в 2010 году, 7.6 млрд. руб. – в 2013 году.

2. Центр по разработке инновационных и импортозамещающих лекарственных препаратов "ХИМРАР" (Московская область) – бизнес-инкубатор для инновационных компаний, занимающихся разработкой и выведением на рынок инновационных лекарств для лечения сердечно-сосудистых, онкологических, инфекционных заболеваний, а также заболеваний эндокринной и центральной нервной системы. Объем инвестиций – 4.3 млрд. руб. (осуществлено – 400 млн. руб.). Планируется привлечение средств государственных институтов развития инновационного бизнеса (ГК "Роснанотех"). Ожидаемый эффект от работы центра – выпуск 5-10 отечественных инновационных препаратов и разработка 20 импортозамещающих дженериков и создание их опытно-промышленного производства.

3. ЗАО "Биокад" (Московская область) – научно-производственная компания, занимающаяся разработкой оригинальных и дженериковых биопрепаратов для лечения урологических, гинекологических, онкологических и неврологических заболеваний.

4. Группа компаний "Биопроцесс" (Москва) – научно-производственная компания, занимающаяся производством биотехнологических субстанций и конечных лекарственных форм. В настоящее время компания занимается как производством дженериковых препаратов, так и инновационными разработками.

Согласно проекту Стратегии развития фармацевтической промышленности до 2020 года, в ближайшее десятилетие в России планируется создать до 10 заводов для производства высокотехнологических био-дженериков. Общая стоимость инвестиций оценивается в 10.8 млрд. руб.

Таким образом, у "красной" биотехнологии в России, несмотря на текущее слабое развитие, есть потенциал для роста – как за счет запуска производства био-дженериков для импортозамещения, так и за счет реализации собственного научного потенциала в этой сфере.

"Белые" биотехнологии

Белая биотехнология охватывает сферу применения биотехнологий в химической промышленности. В задачи белой биотехнологии входят эффективное и безопасное для окружающей среды производство таких субстанций, как алкоголь, витамины, аминокислоты, антибиотики и ферменты.

Продукцию "белой" биотехнологии можно разделить на биохимическую продукцию, биотопливо и продукцию пищевой биотехнологии.

Биотехнологии в химии и нефтехимии пока не получили широкого распространения в мире. Например, доля основной продукции химии - полимеров, полученных с помощью биотехнологий, составляет на текущий момент не более 0.1% в натуральных значениях от общего объема производства полимеров в мире. Однако западные и азиатские страны активно проводят научные исследования в этой сфере, строят опытно-промышленные образцы установок, использующих биотехнологии. В России на текущий момент фактически отсутствуют промышленные образцы примеров использования биотехнологии в химической промышленности, но при этом российская научная база по некоторым перспективным направлениям химии (например, получение биодеградируемых полимеров) позволяет при наличии соответствующих объемов финансирования наладить крупнотоннажные производства необходимых материалов.

Перспективным направлением также является гидролизная промышленность. В СССР полностью обеспечивался внутренний спрос на многие первичные химические компоненты (фурфурол, левулиновая кислота и пр.), используемые в производстве продукции с высокой добавленной стоимостью. В настоящий момент существует благоприятная мировая конъюнктура для возрождения гидролизной промышленности в России уже с учетом имеющихся новейших биотехнологий.

Производство биотоплива, растущее во всем мире очень высокими темпами благодаря реализуемой многими странами политике обеспечения независимости от внешних поставок энергоносителей и экологической ответственности, в России в промышленных масштабах не осуществляется. Существует проект крупнотоннажного производства по переработке биомассы с получением биотоплива, который планирует реализовать в Тюменской области ОАО "Корпорация Биотехнологии", созданная ГК "Ростехнологии". Однако без мер государственной поддержки при текущих технологиях производства и ценах на традиционное топливо этот бизнес является нерентабельным.

Вместе с тем, по данным Международного энергетического агентства, объем инвестиций в исследования и бизнес в сфере возобновляемых источников энергии, в том числе и биоэнергетики, удваивается каждые два года. Направление значительных ресурсов на исследования в сфере производства биотоплива второго поколения, получаемого из непригодного для пищи сырья, позволяет ожидать скорой смены технологий, которая даст импульс для "самостоятельного" развития биоэнергетики. В связи с этим есть риск, что без осуществления собственных разработок в этой сфере Россия может пропустить волну смены технологий производства биотоплива, которая приведет к снижению мирового спроса на нефть и нефтепродукты - традиционные экспортные товары Российской экономики.

Продукция пищевой биотехнологии относится в основном к категории пищевых добавок, которые представляют собой вспомогательные технологические средства, участвующие в пищевом производстве и обогащающие продукты питания, а также включает биологически активные добавки (БАД). Одним из основных направлений развития пищевой биотехнологии является получение ферментов.

Ферменты используются практически во всех подотраслях пищевой промышленности – мясной, кондитерской, хлебобулочной, масложировой, кисломолочной, пивоваренной, спиртовой и крахмалопаточной. Ферменты можно получить только биотехнологическими методами. Объем производства ферментов в России составляет сегодня около 15% от уровня 1990 года. Доля российских производителей на рынке ферментов не превышает 20%. При этом внутренний рынок остается ненасыщенным - потребности российской пищевой промышленности в ферментных препаратах существенно выше текущего предложения. Отечественные ферменты используются в основном в кормопроизводстве, производители пищевых продуктов предпочитают импортную продукцию. Основные предприятия ферментной промышленности – ОАО "Восток" (Кировская область), ООО ПО "Сиббиофарм" (Новосибирская область), ОАО "Московский завод сычужного фермента" (г. Москва). Для многих предприятий отрасли характерны высокий износ основных фондов и использование устаревших технологий.

Позиции российского производства на рынке БАД, напротив, достаточно сильны – сегодня в России зарегистрировано около 8 000 наименований БАД, из них не менее 60% - отечественные препараты. По данным "Фармэкспорт", в России около 900 компаний занимаются производством БАД. Крупнейшие производители в отрасли – ЗАО "Эвалар" (Алтайский край), ОАО "Диод" (Москва), ООО "Фора-Фарм" (Москва). Однако большинство компаний работают в низкоценовом сегменте, и на отечественную продукцию приходится не более 30% рынка в стоимостном выражении.

"Зеленые" биотехнологии

Зеленая биотехнология используется в сфере современной селекции растений. С помощью биотехнологических методов разрабатываются эффективные средства противодействия против насекомых, грибков, вирусов и гербицидов. Особое значение для сферы зеленой биотехнологии имеет генная инженерия.

Выращивание генно-модифицированных культур в России законодательно не запрещено . Вместе с тем, согласно статье 50 Федерального закона №7-ФЗ от 10.01.2002 "Об охране окружающей среды", производство, разведение и использование растений, животных и других организмов, созданных искусственным путем, запрещено без получения положительного заключения государственной экологической экспертизы. Подзаконные акты, регулирующие вопросы проведения государственной экологической экспертизы генно-модифицированных культур, не приняты, поэтому на практике она не проводится. Таким образом, в настоящее время выращивание генно-модифицированных культур в промышленных масштабах на территории Российской Федерациине ведется .

При этом российское законодательство в сфере производства и реализации продуктов питания, содержащих генно-модифицированные организмы, близко к европейским нормам: пищевые продукты, полученные из генно-модифицированных организмов, прошедшие медико-биологическую оценку и не отличающиеся по изученным свойствам от своих традиционных аналогов, признаются безопасными для здоровья человека, разрешены для реализации населению и использованию в пищевой промышленности без ограничений. В настоящее время в Российской Федерации прошли полный цикл всех необходимых исследований и разрешены для использования в питании 15 линий генно-модифицированных культур : 8 линий кукурузы, 3 линии сои, 2 сорта картофеля, 1 линия сахарной свеклы, 1 линия риса.

В результате, сложившаяся практика регулирования сферы выращивания и переработки генно-модифицированных культур создает неконкурентные преимущества для импорта сельскохозяйственной продукции и сдерживает развитие "зеленой" биотехнологии и сельского хозяйства в Российской Федерации.

На текущий момент заявлен единственный проект, связанный с развитием трансгенных лесов : российско-шведское предприятие ООО "Байкал-Нордик" в Республике Бурятия до 2012 года планирует реализовать проект стоимостью 1.5 млрд. руб. "Комплексная переработка древесины и строительство инфраструктуры лесоперерабатывающего объекта". Проект включает в себя создание лесопитомника с генно-модифицированными породами.

"Серые" биотехнологии

Серая биотехнология применяется в сфере охраны окружающей среды. Биотехнологические методы используются для санации почв, очистки канализационных стоков, отработанного воздуха и газов, а также для переработки отходов.

В России применение биодеструкторов для очистки почв, воды от загрязнений в большинстве случаев сводится к ликвидации аварийных разливов нефти и нефтепродуктов. Для биоремедиации загрязненных нефтью и нефтепродуктами водоемов и почв используются несколько десятков препаратов, разработанных в России и бывших республиках СССР.

Наиболее известны в России "Путидойл", "Олеоворин", "Нафтокс", "Uni-rem", "Родер", "Центрин", "Псевдомин", "Дестройл", "Микромицет", "Лидер", "Валентис", "Деворойл", "Родобел", "Родобел-Т", "Эконадин", "Десна", "Консорциум микроорганизмов" и "Simbinal". В основном препараты отличаются друг от друга используемыми для их получения штаммами углеводородокисляющих микроорганизмов.

Официальное применение некоторых биодеструкторов было разрешено еще в 1990-ых годах. Многие российские крупнейшие нефтегазовые компании (например, Газпром, Транснефть) официально в своих инструкциях по ликвидации последствий аварий санкционировали применение определенных препаратов (например, Деворойл, Путидойл, Олеоворин).

Таким образом, можно говорить, что в России существуют научные разработки в сфере биоремедиации нефтяных загрязнений, но достаточно слабо проработана научная база по созданию штаммов-деструкторов отходов химической и нефтехимической промышленности. Отсутствуют промышленные технологии по использованию биодеструкторов для биодеградации токсичных веществ, содержащихся в природных ландшафтах, местах техногенных загрязнений.

Заключение

Объем производства биотехнологической продукции в России к 2020 году, согласно разработанной Минэкономразвития программе «БИО-2020», возрастет до 800 миллиардов рублей в сравнении с 24 миллиардами рублей в 2010 году, сообщил в четверг заместитель директора Департамента инновационного развития МЭР Григорий Сенченя. По его данным, в 2015 году объем биотехнологического производства вырастет до 200 миллиардов. При этом объем потребления такой продукции в России, с 210 миллиардов рублей в 2010 году, увеличится в 2015 году до 400 миллиардов, а в 2020 - до 1 триллиона рублей. Соответственно, доля импорта продуктов биотехнологий с 80% в 2010 году снизится до 40% в 2020 году, а доля экспорта за это же время вырастет с менее чем 1% до 25%. «Проект программы сейчас проходит согласование с федеральными ведомствами, но текст ее уже есть, и ключевые ориентиры обозначены», - сказал Сенченя. Он отметил, что целью программы развития биотехнологий в РФ до 2020 года является выход страны на лидирующие позиции в мире в данной области. «Эта программа объединит в себе всю активность в стране, касающуюся биотехнологий. Она предъявляет определенные требования к формированию последующих госпрограмм, которые будут разрабатываться федеральными органами власти», - сказал он. Сенченя также отметил, что в рамках программы планируется ряд инструментов поддержки, в том числе, стимулирование создания в регионах России биотехнологических кластеров. 4

Список литературы

    http://cbio.ru/page/44/id/1170/

    http://www.nbtc.ru/articles/38-chto-takoe-biotexnologii

    http://www.cleandex.ru/articles/2010/04/27/biotechnology_market_in_russia

    http://rosbiotech.com/news/view.php?ID=45

Биотехнология - это уникальная наука, которая использует живые организмы и биологические процессы в практических интересах человека.

Биотехнология позволяет улучшить качество, питательную ценность и безопасность как сельскохозяйственных культур, так и продуктов животного происхождения, составляющих основу используемого пищевой промышленностью сырья.

Кроме того, биотехнология предоставляет массу возможностей усовершенствования методов переработки сырья в конечные продукты: натуральные ароматизаторы и красители; новые технологические добавки, в том числе ферменты и эмульгаторы; заквасочные культуры; новые средства для утилизации отходов; экологически чистые производственные процессы; новые средства для обеспечения сохранения безопасности продуктов в процессе изготовления; и даже биоразрушаемую пластиковую упаковку, уничтожающую бактерии.

Возделывание трансгенных культур первого поколения уже принесло фермерам неплохие доходы. Польза, которую при этом получил потребитель, не так очевидна, но не учитывать ее нельзя. Например, исследования показали, что кукуруза устойчивых к насекомым сортов (содержащих ген Bt-токсина) практически не повреждается насекомыми и, соответственно, менее подвержена грибковым заболеваниям, чем кукуруза обычных сортов. Таким образом, содержание синтезируемых этими возбудителями микотоксинов, некоторые из которых могут вызывать гибель скота и хроническое отравление людей, в растениях Bt-сортов гораздо ниже.

Полезные свойства следующего поколения генетически модифицированных культур гораздо более очевидны для потребителя. Кроме улучшения качества и безопасности пищи в целом, в будущем должны появиться специализированные продукты, отличающиеся повышенной питательностью и способствующие сохранению и укреплению здоровья.

На современном рынке представлено большое количество полезных для здоровья растительных масел, получаемых с помощью биотехнологии. Биотехнология позволила ученым снизить содержание насыщенных жирных кислот в некоторых растительных маслах. Им также удалось осуществить трансформацию омега-6 полиненасыщенной линолевой жирной кислоты в омега-3 полиненасыщенную линоленовую, встречающуюся в основном в рыбе и способствующую снижению уровня холестерина в крови.

Другим вопросом, касающимся питательных свойств растительных масел, является отрицательное влияние на состояние здоровья транс-изомеров жирных кислот, образующихся при гидрогенизации жиров. Этот процесс применяется для повышения жаростойкости (для жарки) или изменения консистенции (для изготовления маргарина) растительных масел. Процесс гидрогенизации приводит к образованию вредных транс-изомеров жирных кислот.

Специалисты биотехнологических компаний разработали метод придания соевому маслу необходимых качеств не за счет гидрогенизации, а за счет повышения содержания в нем стеариновой кислоты.

Биотехнологи, работающие с животными, тоже занимаются поисками путей повышения качества продуктов питания. Уже создана говядина с пониженным содержанием жира и свинина с повышенным соотношением мясо/сало.

Повышение питательной ценности продуктов имеет особенно большое значение для развивающихся стран. Исследователи университета Неру (Нью-Дели) использовали ген южноафриканского растения амаранта для повышения содержания белка в клубнях картофеля. Трансгенный картофель также содержит большое количество незаменимых аминокислот, не входящих в состав клубней обычного картофеля. В качестве примеров можно также упомянуть «золотой рис» и масло канолы, обогащенные витамином А. Дальнейшее усовершенствование «золотого риса» привело к повышению содержания в зернах легкоусваиваемых форм железа.

Биотехнология подает большие надежды и в улучшении показателей продуктов функционального питания. Программы разработки и внедрения на рынок нутрицевтиков - продуктов-лекарств, систематическое употребление которых оказывает регулирующее действие на определенные системы и органы организма, улучшая здоровье человека, приняты во многих странах. Такие продукты содержат повышенное по сравнению с обычными количество незаменимых аминокислот, витаминов, минералов и других биологически активных веществ. Знакомые всем нутрицевтики - чеснок и лук, содержащие вещества, снижающие уровень холестерина и усиливающие иммунитет; богатый антиоксидантами зеленый чай; брокколи и кочанная капуста, в состав которой входят глюкозинолаты, стимулирующие активность противоопухолевых ферментов.

Биотехнология используется для повышения содержания этих и других полезных соединений в продуктах функционального питания. Например, исследователи университета Пердью (г. Лафейетт, штат Индиана) и Министерства сельского хозяйства США (USDA) создали сорт томатов, содержащий в три раза более высокий по сравнению с обычными сортами уровень антиоксиданта ликопена. Употребление ликопена снижает риск возникновения рака простаты и молочной железы, а также снижает содержание в крови «плохого» холестерина. Другая группа специалистов USDA работает над увеличением содержания в клубнике эллаговой кислоты, обладающей противоопухолевыми свойствами.

Биотехнологи занимаются улучшением качества растительного сырья также с точки зрения его привлекательности для покупателя и легкости приготовления. Ученые удлиняют срок хранения фруктов и овощей; делают морковь, паприку и сельдерей более хрустящими; создают не содержащие семян сорта дынь и винограда; продлевают длительность сезонно-географической доступности томатов, клубники и малины; улучшают вкусовые качества томатов, салата-латука, перца, зеленого горошка и картофеля; создают не содержащие кофеина сорта кофе и чая.

Японские ученые идентифицировали фермент, заставляющий нас плакать во время резки лука, и таким образом уже сделали первый шаг на пути к созданию лука, от которого не плачут.

Большая часть работы по улучшению способности продуктов переносить тепловую обработку заключается в изменении соотношения содержания в них воды и крахмала. Например, богатый крахмалом картофель полезней, так как во время жарки он впитывает меньше жира. Другим полезным свойством крахмалистой картошки является то, что для ее приготовления требуется меньше энергии и, соответственно, меньше финансовых затрат. Большинство изготовителей томатных паст и кетчупов в настоящее время используют в качестве сырья созданные с помощью метода клеточных культур сорта томатов. Мякоть таких помидоров содержит на 30% меньше воды, и их переработка экономит пищевой промышленности США 35 миллионов долларов ежегодно.

Другой областью пищевой промышленности, экономически выигрывающей от повышения качества сырья, является производство молочных продуктов. Биотехнологические методы позволили новозеландским ученым добиться повышения содержания в молоке белка казеина - важного компонента процесса сыроварения - на 13%.

Биотехнология также обеспечивает возможность получения продуктов, производство которые при традиционном подходе оказывается экономически невыгодным. Например, промышленное изготовление используемых в качестве подсластителей полимеров фруктозы давно перестало быть прерогативой обычных методов пищевого процессинга. Полимеры фруктозы представляют собой короткие цепочки, состоящие из молекул фруктозы, по вкусу напоминающие сахар, но не содержащие калорий. Исследователи обнаружили ген, превращающий 90% сахара сахарной свеклы в полимеры фруктозы. Они составляют 40% веса такой трансгенной свеклы, что делает ее весьма привлекательным сырьем для изготовления подсластителей.

Наиболее значимой проблемой безопасности сырья для производителей продуктов питания является микробное заражение, которое может возникнуть на любом этапе движения продукта от фермы до стола потребителя. Любой биотехнологический продукт, снижающий количество микроорганизмов на продуктах животного и растительного происхождения, существенно повышает безопасность сырья пищевой промышленности. Повышение безопасности продуктов за счет снижения микробной контаминации начинается с фермы. Устойчивые к вредителям и заболеваниям трансгенные сорта растений в значительно меньшей степени подвержены бактериальному заражению. Новые биотехнологические методы диагностики позволяют выявлять характер бактериальных заболеваний на ранних этапах и с высокой степенью точности, что позволяет изымать и уничтожать заболевших животных или инфицированные растения до того, как болезнь распространилась.

Биотехнология способствует повышению качества сырья еще и за счет выявления и удаления аллергенных белков, содержащихся в таких продуктах, как арахис, соя и молоко. Хотя 95% аллергенов могут быть отнесены к одной из восьми пищевых групп, в большинстве случаев мы не знаем, какой из тысяч пищевых белков послужил причиной запуска аллергической реакции. Использование биотехнологических методик привело к значительному прогрессу в этой области. Кроме того, биотехнологи разработали методы блокирования или удаления генов аллергенности из геномов арахиса, сои и креветок.

И, наконец, биотехнология помогает в повышении качества сельскохозяйственного сырья путем снижения содержания натуральных растительных токсинов, обнаруженных в некоторых культурах, в том числе в картофеле и маниоке.

Биологические методы включают:

микробиологический синтез

генетическую инженерию

клеточную и белковую инженерию

инженерную энзимологию

культивирование клеток растений, животных и бактерий

методы слияния клеток

Биотехнология как наука возникла на стыке слияния биологических, химических и технических наук.

Основные разделы биотехнологии.

Микробная биотехнология - основная часть биотехнологии.

Связана с поисками новых природных продуцентов. Это генетика и селекция известных микроорганизмов и получение штаммов с высокой продуктивностью.

Методы - индуцированный мутагенез или ступенчатый отбор лучших форм или генная инженерия.

Связана с производством различных пищевых продуктов: вино, хлеб, молочные продукты и прочее.

1) Инженерная инзимология

Цель - создание технологических процессов с использованием ферментов.

Решает конкретные задачи:

Создание нового продукта или улучшение его качества;

Использование нетрадиционных видов сырья;

Разработка безотходных технологий.

Очень перспективно исследование иммобилизированных ферментов и клеток на носителе.

Этот метод применяется в медицине для лечения и диагностики различных заболеваний. Иммобилизированные клетки применяют при биологической очистке сточных вод.

Тканевые ферменты животных и растений способствуют формированию химических предшественников вкуса и аромата, консистенции за счет специфической деструкции биополимерных систем пищевого сырья, т.е. осуществляют созревание.

3) Генная инженерия.

Цель - направленное создание организмов с заданными свойствами на основе изменения (рекомбинации) их генотипа.

Генная инженерия позволяет изолировать или изменять отдельные гены, модифицируя молекулу ДНК и перенося ее из одного организма в другой.

Амплификация нужных генов.

4) Клеточная инженерия.

Объект - культуры клеток высших животных или растительных организмов.

Получают культивированием на различных средах отдельно выделенных из организмов клеток.

Задача - конструирование новых клеток и клеточных систем.

БИОТЕХНОЛОГИЯ

БИОТЕХНОЛОГИЯ - производственное использование биологических агентов (в частности микроорганизмов) для получения полезных продуктов и осуществления целевых превращений. В биотехнологических процессах также используются такие биологические макромолекулы как белки - чаще всего ферменты, рибонуклеиновые кислоты.

Биотехнология - это наука об использовании биологических процессов в технике и промышленном производстве. Название ее происходит от греческих слов bios - жизнь, teken - искусство, logos - слово, учение, наука. В соответствии с определением Европейской федерации биотехнологов (ЕФБ, 1984) биотехнология базируется на интегральном использовании биохимии, микробиологии и инженерных наук в целях промышленной реализации способностей микроорганизмов, культур клеток тканей и их частей. Уже в самом определении предмета отражено его местоположение как пограничного, благодаря чему результаты фундаментальных исследований в области биологических, химических и технических дисциплин приобретают выраженное прикладное значение.

Основным направлением компании ООО "Пропионикс" является пищевая биотехнология:

(пищевая биоиндустрия) - раздел биотехнологии, занимающийся разработкой теории и практики создания пищевых продуктов общего, лечебно-профилактического назначения и специальной ориентации.

Развитие производства и пищевого инжиниринга продуктов данной группы является необходимым элементом для формирования в России рынка здорового питания. Задачей данного комплекса мероприятий является создание пробиотических продуктов, расширение исследований и практики внедрения в ассортимент предприятий новых продуктов и комплексных решений.

К функционально пищевым продуктам относят пищевые продукты систематического употребления, сохраняющие и улучшающие здоровье и снижающие риск развития заболеваний благодаря наличию в их составе функциональных ингредиентов. Они не являются лекарственными средствами, но препятствуют возникновению отдельных болезней, способствуют росту и развитию детей, тормозят старение организма. В соответствии с мировой практикой продукт считается функциональным, если регламентируемое содержание микронутриентов в нем достаточно для удовлетворения (при обычном уровне потребления) 25-50% от среднесуточной потребности в этих компонентах. Развитие направления является важной социальной задачей, снижающей нагрузку на сектор медицины и социально-экономический ущерб от болезней.

"Пищевые ингредиенты, включая витамины и функциональные смеси"

Пищевые ингредиенты используются для повышения питательной ценности, удлинения срока хранения, изменения консистенции и усиления вкуса и аромата продуктов. Используемые производителями пищевые ингредиенты, как правило, имеют растительное или бактериальное происхождение. Многие аминокислотные добавки, усилители вкуса и витамины, добавляемые в пищевые продукты, производятся с помощью бактериальной ферментации. В результате реализации комплекса мероприятий биотехнология должна обеспечить производителям пищевых продуктов возможность синтеза большого количества пищевых добавок, которые в настоящее время слишком дороги либо малодоступны из-за ограниченности природных источников этих соединений.

"Глубокая переработка пищевого сырья"

Биотехнология предоставляет множество возможностей усовершенствования методов переработки сырья в конечные продукты: натуральные ароматизаторы и красители; новые технологические добавки, в том числе ферменты и эмульгаторы; заквасочные культуры; новые средства для утилизации отходов; экологически чистые производственные процессы; новые средства для обеспечения сохранения безопасности продуктов в процессе изготовления.

Сельскохозяйственная биотехнология


Прим.: Здесь актуальным для ООО "Пропионикс" являются направления Сельскохозяйственной биотехнологии, отмеченные в программе под пп 5.7. и 5.9 (кормовой белок и биологические компоненты кормов и премиксов):

"Кормовой белок"

Согласно терминологии указанной программы, кормовой микробиологический белок (кормовые дрожжи)* - это сухая концентрированная биомасса дрожжевых клеток, специально выращиваемая на корм сельскохозяйственным животным, птице, пушным зверям, рыбе. Добавление кормового белка в корма резко улучшает их качество и способствует повышению производительности в животноводстве. Комплексом мероприятий будет предусмотрено развитие производства кормового белка в России и создание новых научно-технических заделов, совершенствующих технологии его производства и виды использования.

*Прим.: Однако здесь следует отметить, что использование бактерий в качестве продуцента белкового корма является более эффективным, так как бактерии образуют до 75% белка по массе, в то время как дрожжи - не более 60%. Например, использование различных штаммов пропионовокислых бактерий (Propionibacterium freudenreichii subsp. shermanii), позволяет получать кормовой белок со значительными технологическими и качественными преимуществами.

"Биологические компоненты кормов и премиксов"

Современный уровень технологий кормления сельскохозяйственных животных опирается на широкое применение биологичских компонентов (ферменты, аминокислоты, БВК, пробиотики и другие). В результате развития животноводства в России, которое в основном опирается на импорт технологий и поголовья, сформировался емкий рынок этих продуктов биотехнологии. Однако формирование рынка не привело пока к развитию производственной и технологической базы, появлению новых продуктов, созданных на основе научных достижений российских ученых.

В 2010 году в животноводстве в качестве кормов было использовано 45 млн. т зерна, что говорит о крайне низкой эффективности кормопроизводства в стране. Доля зерна в комбикормах составляет 70% (в странах Европейского Союза - 40-45%), кроме того, в непереработанном виде было использовано более половины из общего количества зерна предназначенного для кормов.

Важно отметить, что производство комбикормов и премиксов в значительной степени ведется без использования биопрепаратов (ферментов, ветеринарных и кормовых антибиотиков, пробиотиков и так далее). При таком кормлении конверсия корма в получение животноводческой продукции существенно отстает от мировых показателей, что снижает конкурентоспособность российского животноводства. Комплексом мероприятий будут созданы условия для развития производственной и технологической базы биотехнологических компонентов кормов и премиксов.

Реализация указанных комплексов мероприятий позволит решить вопросы создания высокоэффективного сельского хозяйства и обеспечения населения полноценным сбалансированным питанием.

См. также:

  • Пробиотики в животноводстве (птицеводстве)

«Если без науки не может быть современной промышленности, то без нее не может быть и современной науки»

Дмитрий Иванович Менделеев