Главная · Вредные привычки · Санитарные нормы шума на рабочих местах. Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки Воздействие фактора на организм человека

Санитарные нормы шума на рабочих местах. Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки Воздействие фактора на организм человека

В настоящее время эксплуатация подавляющего большинства технологического оборудования, энергетических установок неизбежно связана с возникновением шумов и вибрацией различной частоты и интенсивности, оказывающих неблагоприятное влияние на организм человека. Длительное воздействие шума и вибрации снижает работоспособность, может привести к развитию профессиональных заболеваний.

Шум, как гигиенический фактор, представляет собой совокупность звуков, неблагоприятно воздействующих на организм человека, мешающих его работе и отдыху. Шум представляет собой волнообразно распространяющиеся колебательные движения частиц упругой (газовой, жидкой или твердой) среды. Обычно шум является сочетанием звуков различной частоты и интенсивности.

Интенсивный шум при ежедневном воздействии приводит к возникновению профессионального заболевания - тугоухости, основным симптомом которого является постепенная потеря слуха на оба уха, первоначально лежащая в области высоких частот (4000 Гц), с последующим распространением на более низкие частоты, определяющие способность воспринимать речь. При очень большом звуковом давлении может произойти разрыв барабанной перепонки.

Кроме непосредственного воздействия на орган слуха, шум влияет на различные отделы головного мозга, изменяя нормальные процессы высшей нервной деятельности. Характерными являются жалобы на повышенную утомляемость, общую слабость, раздражительность, апатию, ослабление памяти, бессонницу и т. п. Шум понижает производительность труда, увеличивает брак в работе, может явиться косвенной причиной производственной травмы.
В зависимости от характера вредного воздействия на организм человека шум подразделяется на мешающий, раздражающий, вредный и травмирующий.

Мешающий - это шум, мешающий речевой связи (разговоры, движения людских потоков). Раздражающий шум - вызывающий нервное напряжение, снижение работоспособности (гудение неисправной лампы дневного света в помещении, хлопанье двери и т. п.). Вредный шум - вызывающий хронические заболевания сердечно-сосудистой и нервной систем (различные виды производственных шумов). Травмирующий шум - резко нарушающий физиологические функции организма человека.

Степень вредности шума характеризуется его силой, частотой, продолжительностью и регулярностью воздействия.

Нормирование шума ведется в двух направлениях: гигиеническое нормирование и нормирование шумовых характеристик машин и оборудования.

Действующие в настоящее время нормы шума на рабочих местах регламентируются СН 9-86-98 «Шум на рабочих местах. Методические указания» и ГОСТ 12.1.003-83 ССБТ. «Шум. Общие требования безопасности».

Согласно указанным документам производственные шумы подразделяют по:
- спектру шума: широкополосные и тональные;
- временным характеристикам: постоянные и непостоянные.

В свою очередь, непостоянные шумы бывают: колеблющиеся во времени (воющие), прерывистые, импульсные (следующие друг за другом с интервалом более 1 сек).

Для ориентировочной оценки шума принимают уровень звука, определяемый по так называемой шкале А шумомера в децибелах - дБА.

Нормами устанавливаются допустимые уровни шума в рабочих помещениях различного назначения. При этом зоны с уровнем звука выше 85 дБА необходимо обозначать специальными знаками, работающих в этих зонах снабжать средствами индивидуальной защиты. Основой мероприятий по снижению производственного шума является техническое нормирование.

В соответствии с ГОСТ 12.1.003-83 при нормировании шума используются два метода:
- по предельному спектру шума;
- нормирование уровня звука в дБ по шкале А шумомера, имеющего различную чувствительность к различным частотам звука (копирует чувствительность человеческого уха).

Первый метод является основным для постоянных шумов. Второй метод используется для ориентировочной оценки постоянного и непостоянного шума.

Стандарт запрещает даже кратковременное пребывание людей в зонах с уровнем звукового давления свыше 135 дБ.

Для измерения используются шумометры различных модификаций.

Допустимые уровни шума на рабочих местах определяются санитарными нормами.

В помещениях для умственной работы без источников шума (кабинеты, конструкторские бюро, здравпункты) - 50 дБ.

В помещениях конторского труда с источниками шума (клавиатура ПК, телетайпы и т.п.) - 60 дБ.

На рабочих местах производственных помещений и на территории производственных предприятий - 85 дБ.

На территориях жилой застройки в городском районе в 2 м от жилых зданий и границ площадок отдыха - 40 дБ.

Для предварительного определения шума (без прибора) можно пользоваться ориентировочными данными. Например, установлен уровень шума турбокомпрессоров - 118 дБ, центробежных вентиляторов - 114 дБ, мотоцикла без глушителя - 105 дБ, при клепке крупных резервуаров - 125- 135 дБ и т.п.

ГЛАВА 11 ПРОИЗВОДСТВЕННЫЙ ШУМ

ГЛАВА 11 ПРОИЗВОДСТВЕННЫЙ ШУМ

Шумом называют любой нежелательный звук или совокупность таких звуков. Звук представляет собой волнообразно распространяющийся в упругой среде колебательный процесс в виде чередующихся волн сгущения и разряжения частиц этой среды - звуковые волны.

Источником звука может являться любое колеблющееся тело. При соприкосновении этого тела с окружающей средой образуются звуковые волны. Волны сгущения вызывают повышение давления в упругой среде, а волны разряжения - понижение. Отсюда возникает понятие звукового давления - это переменное давление, возникающее при прохождении звуковых волн дополнительно к атмосферному давлению.

Звуковое давление измеряется в Паскалях (1 Па = 1 Н/м 2). Ухо человека ощущает звуковое давление от 2-10 -5 до 2-10 2 Н/м 2 .

Звуковые волны являются носителями энергии. Звуковая энергия, которая приходится на 1 м 2 площади поверхности, расположенной перпендикулярно к распространяющимся звуковым волнам, называется силой звука и выражается в Вт/м 2 . Так как звуковая волна представляет собой колебательный процесс, то он характеризуется такими понятиями, как период колебания (Т) - время, в течение которого совершается одно полное колебание, и частота колебаний (Гц) - число полных колебаний за 1 с. Совокупность частот дает спектр шума.

Шумы содержат звуки разных частот и различаются между собой распределением уровней по отдельным частотам и характером изменения общего уровня во времени. Для гигиенической оценки шума используют звуковой диапазон частот от 45 до 11 000 Гц, включающий 9 октавных полос со среднегеометрическими частотами в 31,5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц.

Орган слуха различает не разность, а кратность изменения звуковых давлений, поэтому интенсивность звука принято оценивать не абсолютной величиной звукового давления, а его уровнем, т.е. отношением создаваемого давления к давлению, принятому за единицу

сравнения. В диапазоне от порога слышимости до болевого порога отношение звуковых давлений изменяется в миллион раз, поэтому для уменьшения шкалы измерения звуковое давление выражают через его уровень в логарифмических единицах - децибелах (дБ).

Ноль децибел соответствует звуковому давлению 2-10 -5 Па, что приблизительно соответствует порогу слышимости тона с частотой 1000 Гц.

Шум классифицируют по следующим признакам:

В зависимости от характера спектра выделяют следующие шумы:

широкополосные, с непрерывным спектром шириной более одной октавы;

тональные, в спектре которых имеются выраженные тоны. Тональный характер шума устанавливают путем измерения в третьоктавных полосах частот по превышению уровня в одной полосе по сравнению с соседними не менее чем на 10 дБ.

По временным характеристикам различают шумы:

постоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА;

непостоянные, уровень шума которых за 8-часовой рабочий день изменяется во времени не менее чем на 5 дБА. Непостоянные шумы можно подразделить на следующие виды:

- колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

- прерывистые, уровень звука которых ступенчато изменяется (на 5 дБ-А и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;

- импульсные, состоящие из одного или нескольких звуковых сигналов, каждый из которых имеет длительность менее 1 с; при этом уровни звука, измеренные соответственно на временных характе- ристиках «импульс» и «медленно» шумомера, различаются не менее чем на 7 дБ.

11.1. источники ШУМА

Шум является одним из наиболее распространенных неблагоприятных факторов производственной среды, воздействие которого на работающих сопровождается развитием у них преждевременного утомления, снижением производительности труда, ростом общей и профессиональной заболеваемости, а также травматизма.

В настоящее время трудно назвать производство, на котором не встречаются повышенные уровни шума на рабочих местах. К наиболее шумным относятся горнорудная и угольная, машино- строительная, металлургическая, нефтехимическая, лесная и цел- люлозно-бумажная, радиотехническая, легкая и пищевая, мясомолочная промышленности и др.

Так, в цехах холодной высадки шум достигает 101-105 дБА, в гвоздильных цехах - 104-110 дБА, в оплеточных - 97-100 дБА, в отделениях полировки швов - 115-117 дБА. На рабочих местах токарей, фрезеровщиков, мотористов, кузнецов-штамповщиков уровень шума колеблется в пределах от 80 до 115 дБА.

На заводах железобетонных конструкций шум достигает 105- 120 дБА. Шум является одной из ведущих профессиональных вредностей в деревообрабатывающей и лесозаготовительной промышленностях. Так, на рабочем месте рамщика и обрезчика уровень шума колеблется от 93 до 100 дБА с максимумом звуковой энергии в области средних и высоких частот. В этих же пределах колеблется шум в столярных цехах, а лесозаготовительные работы (валка, трелевка леса) сопровождаются уровнем шума от 85 до 108 дБА за счет работы трелевочных лебедок, тракторов и других механизмов.

Подавляющее большинство производственных процессов в прядильных и ткацких цехах также сопровождается образованием шума, источником которого является бойковый механизм ткацкого станка, удары погонялки челнока. Наиболее высокий уровень шума наблюдается в ткацких цехах - 94-110 дБА.

Изучение условий труда на современных швейных фабриках показало, что уровень шума на рабочих местах швей-мотористок составляет 90-95 дБА с максимумом звуковой энергии на высоких частотах.

Наиболее шумными операциями в машиностроении, в том числе, авиастроении, автомобилестроении, вагоностроении и др. следует считать обрубные и клепальные работы с использованием пневматических инструментов, режимные испытания двигателей и их агрегатов различных систем, стендовые испытания на вибропрочность изделий, барабанную готовку, шлифовку и полировку деталей, штампопрессовую заготовку.

Для нефтехимической отрасли характерными являются высокочастотные шумы различных уровней за счет сброса сжатого воздуха из замкнутого технологического цикла химических производств или

от оборудования, работающего на сжатом воздухе, например, сборочных станков и вулканизационных линий шинных заводов.

Вместе с тем в машиностроении, как ни в одной другой отрасли, наибольший объем работ приходится на станочную металлообработ- ку, где занято около 50% всех рабочих отрасли.

Металлургическую промышленность в целом можно отнести к отрасли с выраженным шумовым фактором. Так, интенсивный шум характерен для плавильных, прокатных и трубопрокатных производств. Из производств, относящихся к этой отрасли, шумными условиями характеризуются метизные заводы, оснащенные холодновысадочными автоматами.

К наиболее шумным процессам следует отнести шум от открытой воздушной струи (обдув), вырывающейся из отверстий малого диаметра, шум от газовых горелок и шум, образующийся при напылении металлов на различные поверхности. Спектры от всех этих источников очень схожие, типично высокочастотные, без заметного спада энергии до 8-10 кГц.

В лесной и целлюлозно-бумажной отраслях наиболее шумными являются деревообрабатывающие цеха.

Промышленность строительных материалов включает ряд шумных производств: машины и механизмы по дроблению и размолу сырья и производству сборного железобетона.

В горнорудной и угольной промышленностях наиболее шумными являются операции механизированной добычи полезных ископа- емых как с использованием ручных машин (пневмоперфораторы, отбойные молотки), так и с помощью современных стационарных и самоходных машин (комбайны, буровые станки и пр.).

Радиотехническая промышленность в целом сравнительно менее шумная. Лишь подготовительные и заготовительные цеха ее имеют оборудование, характерное для машиностроительной промышленности, но в значительно меньшем количестве.

В легкой промышленности как по шумности, так и по числу занятых рабочих наиболее неблагоприятными являются прядильные и ткацкие производства.

Пищевая промышленность - наименее шумная из всех. Характерные для нее шумы генерируют поточные агрегаты кондитерских и табачных фабрик. Однако отдельные машины этих производств создают значительный шум, например, мельницы зерен какао, некоторые сортировочные машины.

В каждой отрасли промышленности имеются цеха или отдельные компрессорные станции, снабжающие производство сжатым воздухом или перекачивающие жидкости или газообразные продукты. Последние имеют большое распространение в газовой промышленности как большие самостоятельные хозяйства. Компрессорные установки создают интенсивный шум.

Примеры шумов, характерных для различных отраслей промышленности, в абсолютном большинстве случаев имеют общую форму спектров: все они широкополосные, с некоторым спадом звуковой энергии в области низких (до 250 Гц) и высоких (выше 4000 Гц) частот с уровнями 85-120 дБА. Исключением являются шумы аэродинамического происхождения, где уровни звукового давления растут от низких к высоким частотам, а также низкочастотные шумы, которых в промышленности по сравнению с описанными выше значительно меньше.

Все описанные шумы характеризуют наиболее шумные производства и участки, где в основном преобладает физический труд. Вместе с тем широко распространены и шумы менее интенсивные (60-80 дБА), которые, однако, гигиенически значимы при работах, связанных с нервной нагрузкой, например, на пультах управления, при машинной обработке информации и других работах, получающих все большее распространение.

Шум является также наиболее характерным неблагоприятным фактором производственной среды на рабочих местах пассажирских, транспортных самолетов и вертолетов; подвижного состава железнодорожного транспорта; морских, речных, рыбопромысловых и других судов; автобусов, грузовых, легковых и специальных автомобилей; сельскохозяйственных машин и оборудования; строительнодорожных, мелиоративных и других машин.

Уровни шума в кабинах современных самолетов колеблются в широком диапазоне - 69-85 дБА (магистральные самолеты для авиалиний со средней и большой дальностью полета). В кабинах автомобилей средней грузоподъемности при различных режимах и условиях эксплуатации уровни звука составляют 80-102 дБА, в кабинах большегрузных автомобилей - до 101 дБА, в легковых автомобилях - 75-85 дБА.

Таким образом, для гигиенической оценки шума важно знать не только его физические параметры, но и характер трудовой деятель- ности человека-оператора, и, прежде всего, степень его физической или нервной нагрузки.

11.2. биологическое действие шума

Большой вклад в изучение проблемы шума внесла профессор Е.Ц. Андреева-Галанина. Она показала, что шум является обще- биологическим раздражителем и оказывает влияние не только на слуховой анализатор, но, в первую очередь, действует на структуры головного мозга, вызывая сдвиги в различных системах организма. Проявления шумового воздействия на организм человека могут быть условно подразделены на специфические изменения, наступающие в органе слуха, и неспецифические, возникающие в других органах и системах.

Ауральные эффекты. Изменения звукового анализатора под влиянием шума составляют специфическую реакцию организма на акустическое воздействие.

Общепризнано, что ведущим признаком неблагоприятного влияния шума на организм человека является медленно прогрессирующее понижение слуха по типу кохлеарного неврита (при этом, как правило, страдают оба уха в одинаковой степени).

Профессиональное снижение слуха относится к сенсоневральной (перцепционной) тугоухости. Под этим термином подразумевают нарушение слуха звуковоспринимающего характера.

Снижение слуха под влиянием достаточно интенсивных и длительно действующих шумов связано с дегенеративными измене- ниями как в волосковых клетках кортиева органа, так и в первом нейроне слухового пути - спиральном ганглии, а также в волокнах кохлеарного нерва. Однако единого мнения о патогенезе стойких и необратимых изменений в рецепторном отделе анализатора не существует.

Профессиональная тугоухость развивается обычно после более или менее длительного периода работы в шуме. Сроки ее возникновения зависят от интенсивности и частотно-временных параметров шума, длительности его воздействия и индивидуальной чувствительности органа слуха к шуму.

Жалобы на головную боль, повышенную утомляемость, шум в ушах, которые могут возникать в первые годы работы в условиях шума, не являются специфическими для поражения слухового анализатора, а скорее характеризуют реакцию ЦНС на действие шумового фактора. Ощущение понижения слуха возникает обычно значительно позже появления первых аудиологических признаков поражения слухового анализатора.

С целью обнаружения наиболее ранних признаков действия шума на организм и, в частности, на звуковой анализатор, наиболее широко используется метод определения временного смещения порогов слуха (ВСП) при различной длительности экспозиции и характере шума.

Кроме того, этот показатель применяется для прогнозирования потерь слуха на основании соотношения между постоянными сме- щениями порогов (потерями) слуха (ПСП) от шума, действующего в течение всего времени работы в шуме, и временными смещениями порогов (ВСП) за время дневной экспозиции тем же шумом, измеренными спустя две минуты после экспозиции шумом. Например, у ткачей временные смещения порогов слуха на частоте 4000 Гц за дневную экспозицию шумом численно равны постоянным потерям слуха на этой частоте за 10 лет работы в этом же шуме. Исходя из этого, можно прогнозировать возникающие потери слуха, определив лишь сдвиг порога за дневную экспозицию шумом.

Шум, сопровождающийся вибрацией, более вреден для органа слуха, чем изолированный.

Экстраауральное влияние шума. Представление о шумовой болезни сложилось в 1960-70 гг. на основании работ по влиянию шума на сердечно-сосудистую, нервную и др. системы. В настоящее время ее заменила концепция экстраауральных эффектов как неспецифических проявлений действия шума.

Рабочие, подвергающиеся воздействию шума, предъявляют жалобы на головные боли различной интенсивности, нередко с локализацией в области лба (чаще они возникают к концу работы и после нее), головокружение, связанное с переменой положения тела, зависящее от влияния шума на вестибулярный аппарат, снижение памяти, сонливость, повышенную утомляемость, эмоциональную неустойчивость, нарушение сна (прерывистый сон, бессонница, реже сонливость), боли в области сердца, снижение аппетита, повышенную потливость и др. Частота жалоб и степень их выраженности зависят от стажа работы, интенсивности шума и его характера.

Шум может нарушать функцию сердечно-сосудистой системы. Отмечены изменения в электрокардиограмме в виде укорочения интервала Q-T, удлинения интервала P-Q, увеличения длительности и деформации зубцов Р и S, смещения интервала T-S, изменение вольтажа зубца Т.

Наиболее неблагоприятным с точки зрения развития гипертензивных состояний является широкополосный шум с преобладанием высокочастотных составляющих и уровнем свыше 90 дБА, особенно импульсный шум. Широкополосный шум вызывает максимальные сдвиги в периферическом кровообращении. Следует иметь в виду, что если к субъективному восприятию шума имеется привыкание (адаптация), то в отношении развивающихся вегетативных реакций адаптации не наблюдается.

По данным эпидемиологического изучения распространенности основных сердечно-сосудистых заболеваний и некоторых факторов риска (избыточная масса, отягощенный анамнез и др.) у женщин, работающих в условиях воздействия постоянного производственного шума в диапазоне от 90 до 110 дБА, показано, что шум, как отдельно взятый фактор (без учета общих факторов риска), может увеличивать частоту артериальной гипертонии (АГ) у женщин в возрасте до 39 лет (при стаже меньше 19 лет) лишь на 1,1%, а у женщин старше 40 лет - на 1,9%. Однако при сочетании шума хотя бы с одним из «общих» факторов риска можно ожидать учащения АГ уже на 15%.

При воздействии интенсивного шума 95 дБА и выше может иметь место нарушение витаминного, углеводного, белкового, холестерино- вого и водно-солевого обменов.

Несмотря на то что шум оказывает влияние на организм в целом, основные изменения отмечаются со стороны органа слуха, цент- ральной нервной и сердечно-сосудистой систем, причем изменения нервной системы могут предшествовать нарушениям в органе слуха.

Шум является одним из наиболее сильных стрессорных производственных факторов. В результате воздействия шума высокой интенсивности одновременно возникают изменения как в нейроэндокринной, так и в иммунной системах. При этом происходит стимуляция передней доли гипофиза и увеличение секреции надпочечниками стероидных гормонов, а как следствие этого - развитие приобретенного (вторичного) иммунодефицита с инволюцией лимфоидных органов и значительными изменениями содержания и функционального состояния Т- и В-лимфоцитов в крови и костном мозге. Возникающие дефекты иммунной системы касаются, в основном, трех основных биологических эффектов:

Снижение антиинфекционного иммунитета;

Создание благоприятных условий для развития аутоиммунных и аллергических процессов;

Снижение противоопухолевого иммунитета.

Доказана зависимость между заболеваемостью и величиной потерь слуха на речевых частотах 500-2000 Гц, свидетельствующая о том, что одновременно со снижением слуха наступают изменения, способствующие снижению резистентности организма. При увеличении производственного шума на 10 дБА показатели общей заболеваемости работающих (как в случаях, так и в днях) возрастают в 1,2-1,3 раза.

Анализ динамики специфических и неспецифических нарушений с возрастанием стажа работы при шумовом воздействии на примере ткачей показал, что с увеличением стажа у ткачей формируется полиморфный симптомокомплекс, включающий патологические изменения органа слуха в сочетании с вегетососудистой дисфункцией. При этом темп прироста потерь слуха в 3,5 раза выше, чем прирост функциональных нарушений нервной системы. При стаже до 5 лет преобладают преходящие вегетососудистые нарушения, при стаже свыше 10 лет - потери слуха. Выявлена также взаимосвязь частоты вегетососудистой дисфункции и величины потери слуха, проявляющаяся в их росте при снижении слуха до 10дБ и в стабилизации при прогрессировании тугоухости.

Установлено, что в производствах с уровнями шума до 90-95 дБА вегетативно-сосудистые расстройства появляются раньше и пре- валируют над частотой кохлеарных невритов. Максимальное их развитие наблюдается при 10-летнем стаже работы в условиях шума. Только при уровнях шума, превышающих 95 дБА, к 15 годам работы в «шумной» профессии экстраауральные эффекты стабилизируются, и начинают преобладать явления тугоухости.

Сравнение частоты потерь слуха и нервно-сосудистых нарушений в зависимости от уровня шума показало, что темп роста потерь слуха почти в 3 раза выше темпа роста нервно-сосудистых нарушений (соответственно около 1,5 и 0,5% на 1 дБА), то есть с увеличением уровня шума на 1 дБА потери слуха будут возрастать на 1,5%, а нервно-сосудистые нарушения - на 0,5%. При уровнях 85 дБА и выше на каждый децибел шума нервно-сосудистые нарушения наступают на полгода раньше, чем при более низких уровнях.

На фоне происходящей интеллектуализации труда, роста удельного веса операторских профессий отмечается повышение значения шумов средних уровней (ниже 80 дБА). Указанные уровни не вызывают потерь слуха, но, как правило, оказывают мешающее, раздражающее и утомляющее действия, которые суммируются с

таковым от напряженного труда и при возрастании стажа работы в профессии могут привести к развитию экстраауральных эффектов, проявляющихся в общесоматических нарушениях и заболеваниях. В связи с этим был обоснован биологический эквивалент действия на организм шума и нервно-напряженного труда, равный 10 дБА шума на одну категорию напряженности трудового процесса (Суворов Г.А. и др., 1981). Этот принцип положен в основу действующих санитарных норм по шуму, дифференцированных с учетом напряженности и тяжести трудового процесса.

В настоящее время большое внимание уделяется оценке профессиональных рисков нарушения здоровья работающих, в том числе обусловленных неблагоприятным воздействием производственного шума.

В соответствии со стандартом ИСО 1999.2 «Акустика. Определение профессионального воздействия шума и оценка нарушений слуха, вызванного шумом» можно оценивать риск нарушений слуха в зависимости от экспозиции и прогнозировать вероятность возникновения профзаболеваний. На основе математической модели стандарта ИСО определены риски развития профессиональной тугоухости в процентах с учетом отечественных критериев профессиональной тугоухости (табл. 11.1 ). В России степень профессиональной тугоухости оценивается по средней величине потерь слуха на трех речевых частотах (0,5-1-2 кГц); величины более 10, 20, 30 дБ соответствуют 1-й, II-й, III-й степени снижения слуха.

Учитывая, что снижение слуха I-й степени с довольно большой вероятностью может развиться и без шумового воздействия в результате возрастных изменений, представляется нецелесообразным использовать I-ую степень снижения слуха для оценки безопасного стажа работы. В связи с этим в таблице представлены вычисленные значения рабочего стажа, в течение которого могут развиться потери слуха II-й и III-й степени в зависимости от уровня шума на рабочих местах. Данные даются для разных вероятностей (в %).

В табл. 11.1 приведены данные для мужчин. У женщин из-за более медленного, чем у мужчин, нарастания возрастных изменений слуха данные слегка отличаются: для стажа более 20 лет у женщин безо- пасный стаж на 1 год больше, чем у мужчин, а для стажа более 40 лет - на 2 года.

Таблица 11.1. Стаж работы до развития потерь слуха, превышающих

критериальные значения, в зависимости от уровня шума на рабочем месте (при 8-часовом воздействии)

Примечание. прочерк означает, что стаж работы составляет более 45 лет.

Вместе с тем следует отметить, что стандарт не учитывает характер трудовой деятельности, как это предусмотрено в санитарных нормах по шуму, где предельно допустимые уровни шума дифференцированы по категориям тяжести и напряженности труда и тем самым охватывают неспецифическое действие шума, что важно для сохранения здоровья и работоспособности лиц операторских профессий.

11.3. нормирование шума на рабочих местах

Профилактика неблагоприятного влияния шума на организм работающих основана на его гигиеническом нормировании, целью которого является обоснование допустимых уровней и комплекса гигиенических требований, обеспечивающих предупреждение функциональных расстройств или заболеваний. В гигиенической практике в качестве критерия нормирования используют предельно допустимые уровни (ПДУ) для рабочих мест, допускающие ухудшение и изменение внешних показателей деятельности (эффективности

и производительности) при обязательном возврате к прежней системе гомеостатического регулирования исходного функционального состояния с учетом адаптационных изменений.

Нормирование шума проводится по комплексу показателей с учетом их гигиенической значимости. Действие шума на организм оценивают по обратимым и необратимым, специфическим и неспецифическим реакциям, снижению работоспособности или дискомфорта. Для сохранения здоровья, работоспособности и самочувствия человека оптимальное гигиеническое нормирование должно учитывать вид трудовой деятельности, в частности, физический и нервноэмоциональный компоненты труда.

Воздействие шумового фактора на человека состоит из двух составляющих: нагрузки на орган слуха как систему, воспринимаю- щую звуковую энергию, - ауральный эффект, и воздействие на центральные звенья звукового анализатора как систему приема информации - экстраауральный эффект. Для оценки первой составляющей есть специфический критерий - «утомление органа слуха», выражающийся в смещении порогов восприятия тонов, которое пропорционально величине звукового давления и времени экспозиции. Вторая составляющая получила название неспецифического влияния, кото- рое можно объективно оценить по интегральным физиологическим показателям.

Шум может рассматриваться как фактор, участвующий в эфферентном синтезе. На этой стадии в нервной системе происходит сопоставление всех возможных эфферентных влияний (обстановочных, обратных и поисковых) с тем, чтобы выработать наиболее адекватную ответную реакцию. Действие сильного производственного шума является таким фактором внешней среды, который по своей природе тоже влияет на эфферентную систему, т.е. воздействует на процесс формирования рефлекторной реакции в стадии эфферентного синтеза, но как обстановочный фактор. При этом результат воз- действия обстановочного и пускового влияний зависит от их силы.

В случаях установки на деятельность обстановочная информация должна являться элементом стереотипа и, следовательно, не вызывать неблагоприятных изменений в организме. Вместе с тем привыкание к шуму в физиологическом смысле не наблюдается, выраженность утомления и частота неспецифических нарушений нарастают с увеличением стажа работы в условиях шума. Следовательно, механизм действия шума нельзя ограничивать фактором участия его в

обстановочной афферентации. В обоих случаях (шум и напряжение) речь идет о нагрузке на функциональные системы высшей нервной деятельности, и, следовательно, генез утомления при таком воздействии будет носить сходный характер.

Критерием нормирования по оптимальному уровню для многих факторов, в том числе для шума, можно рассматривать такое состоя- ние физиологических функций, при котором данный уровень шума не вносит своей доли в их напряжение, и последнее целиком определяется выполняемой работой.

Напряженность труда складывается из элементов, входящих в биологическую систему рефлекторной деятельности. Анализ информации, объем оперативной памяти, эмоциональное напряжение, функциональное напряжение анализаторов - все эти элементы оказываются загруженными в процессе трудовой деятельности, и естественно, что их активная нагрузка вызывает развитие утомления.

Как и в любом случае, ответ на воздействие состоит из компонентов специфического и неспецифического характеров. Какова доля каждого из этих элементов в процессе утомления - вопрос нерешенный. Однако нет никаких сомнений в том, что воздействие шума и напряженности труда нельзя рассматривать одно без учета другого. В связи с этим эффекты, опосредованные через нервную систему (утомление, снижение работоспособности), как для шума, так и для напряженности труда имеют качественное сходство. Производственные и экспериментальные исследования с использованием социально-гигиенических, физиологических и клинических методов и показателей подтвердили указанные теоретические положения. На примере изучения разных профессий была установлена величина физиолого-гигиенического эквивалента шума и напряжен- ности нервно-эмоционального труда, которая находилась в пределах 7-13 дБА, т.е. в среднем 10 дБА на одну категорию напряженности. Следовательно, оценка напряженности трудового процесса оператора является необходимой для полноценной гигиенической оценки шумового фактора на рабочих местах.

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности представлены в табл. 11.2.

Количественную оценку тяжести и напряженности трудового процесса следует проводить в соответствии с критериями Руководства 2.2.2006-05.

Таблица 11.2. Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности, дБА

Примечание.

Для тонального и импульсного шумов ПДУ на 5 дБА меньше значений, указанных в таблице;

Для шума, создаваемого в помещениях установками кондиционирования воздуха, вентиляции и воздушного отопления, ПДУ на 5 дБА меньше фактических уровней шума в помещениях (измеренных или рассчитанных), если последние не превышают значений табл. 11.1 (поправка для тонального и импульсного шумов при этом не учитывается), в противном случае - на 5 дБА меньше значений, указанных в таблице;

Дополнительно для колеблющегося во времени и прерывистого шумов максимальный уровень звука не должен превышать 110 дБА, а для импульсного шума - 125 дБА.

Поскольку целью дифференцированного нормирования шума является оптимизация условий труда, встречающиеся сочетания напряженного и очень напряженного с тяжелым и очень тяжелым физическим трудом не нормируются исходя из необходимости их ликвидации как недопустимых. Однако для практического использования новых дифференцированных норм как при проектировании предприятий, так и при текущем контроле за уровнями шума на действующих предприятиях серьезной проблемой является приведение в соответствие категорий тяжести и напряженности труда с видами трудовой деятельности и рабочих помещений.

Импульсный шум и его оценка. Понятие импульсного шума не является строго определенным. Так, в действующих санитарных нормах к импульсному шуму относят шумы, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБА, измеренные по характеристикам «импульс» и «медленно», различаются не менее чем на 7 дБ.

Одним из важных факторов, определяющих различие реакций на постоянный и импульсный шумы, является пиковый уровень. В соответствии с концепцией «критического уровня» шумы с уровнями выше определенного, даже очень кратковременные, могут вызывать прямую травматизацию органа слуха, что подтверждается морфологическими данными. Многие авторы указывают разные значения критического уровня: от 100-105 дБА до 145 дБА. Такие уровни шума встречаются на производстве, например, в кузнечных цехах шум от молотов достигает 146 и даже 160 дБА.

По-видимому, опасность импульсного шума определяется не только высокими эквивалентными уровнями, но и дополнительным вкладом временных характеристик, вероятно, за счет травмирующего эффекта высоких пиковых уровней. Исследования распределения уровней импульсного шума показали, что, несмотря на малое суммарное время действия пиков с уровнями выше 110 дБА, их вклад в общую дозу может достигать 50%, и это значение 110 дБА было рекомендовано как дополнительный критерий при оценке непостоянных шумов к ПДУ по действующим санитарным нормам.

Приведенные нормы устанавливают ПДУ для импульсного шума на 5 дБ ниже, чем для постоянных шумов (т.е. вносят поправку минус 5 дБА по эквивалентному уровню), и дополнительно ограничивают максимальный уровень звука 125 дБА «импульс», но не регламентируют пиковые значения. Тем самым действующие нормы

ориентируются на громкостные эффекты шума, поскольку характеристика «импульс» с t = 40 мс адекватна верхним отделам звукового анализатора, а не возможному травматическому действию его пиков, являющемуся общепризнанным в настоящее время.

Шумовое воздействие на работающих, как правило, является непостоянным по уровню шума и (или) времени его действия. В связи с этим для оценки непостоянных шумов введено понятие эквивалентного уровня звука. С эквивалентным уровнем связана доза шума, которая отражает количество переданной энергии и поэтому может служить мерой шумовой нагрузки.

Наличие в действующих санитарных нормах шума на рабочих местах, в помещениях жилых и общественных зданий и на территории жилых застроек в качестве нормируемого параметра эквивалентного уровня и отсутствие такового в качестве дозы шума объясняются рядом факторов. Во-первых, отсутствием в стране отечественных дозиметров; во-вторых, при нормировании шума для жилых помещений и для некоторых профессий (работников, у которых орган слуха является рабочим органом) энергетическая концепция требует поправок, вносимых в измерительные приборы, для выражения шума не в уровнях звукового давления, а в величинах субъективной громкости.

Учитывая появление в последние годы нового направления в гигиенической науке по установлению степени профессионального риска от различных факторов производственной среды, в том числе и от шума, следует учитывать в перспективе величину дозы шума с различными категориями риска не столько по специфическому влиянию (слуховому), сколько по неспецифическим проявлениям (нарушениям) со стороны других органов и систем организма.

До настоящего времени влияние шума на человека изучалось изолированно: в частности, промышленного шума - на рабочих различных производств, служащих административно-управленческого аппарата; городского и жилищно-бытового шума - на население различных категорий в условиях проживания. Эти исследования позволяли обосновать нормативы для постоянного и непостоянного, производственного и бытового шумов в различных местах и условиях пребывания человека.

Однако для гигиенической оценки влияния шумов на человека в производственных и внепроизводственных условиях целесообразно учитывать суммарное шумовое воздействие на организм, что

возможно на основе концепции суточной дозы шума с учетом видов жизнедеятельности человека (работа, отдых, сон), исходя из возможности кумуляции их эффектов.

11.4. профилактика неблагоприятного действия шума

Мероприятия по борьбе с шумом могут быть техническими, архитектурно-планировочными, организационными и медико-профи- лактическими.

Технические средства борьбы с шумом:

Устранение причин возникновения шума или снижение его в источнике;

Ослабление шума на путях передачи;

Непосредственная защита работающего или группы рабочих от воздействия шума.

Наиболее эффективным средством снижения шума является замена шумных технологических операций на малошумные или полностью бесшумные. Большое значение имеет снижение шума в источнике. Этого можно добиться усовершенствованием конструкции или схемы установки, производящей шум, изменением режима ее работы, оборудованием источника шума дополнительными звукоизолирующими устройствами или ограждениями, расположенными по возможности ближе к источнику (в пределах его ближнего поля). Одним из наиболее простых технических средств борьбы с шумом на путях передачи является звукоизолирующий кожух, который может закрывать отдельный шумный узел машины (например, коробку передач) или весь агрегат в целом. Кожухи из листового металла с внутренней облицовкой звукопоглощающим материалом могут снижать шум на 20-30 дБ. Увеличение звукоизоляции кожуха достигается за счет нанесения на его поверхность вибродемпфирующей мастики, обеспечивающей снижение уровней вибрации кожуха на резонансных частотах и быстрое затухание звуковых волн.

Для ослабления аэродинамического шума, создаваемого компрессорами, вентиляционными установками, системами пневмотранспорта и др., применяются глушители активного и реактивного типов. Наиболее шумное оборудование размещают в звукоизолирующих камерах. При больших габаритах машин или значительной зоне обслуживания оборудуют специальные кабины для операторов.

Акустическая отделка помещений с шумным оборудованием может обеспечить снижение шума в зоне отраженного звукового поля на 10-12 дБ и в зоне прямого звука до 4-5 дБ в октавных полосах частот. Применение звукопоглощающих облицовок для потолка и стен приводит к изменению спектра шума в сторону более низких частот, что даже при относительно небольшом снижении уровня существенно улучшает условия труда.

В многоэтажных промышленных зданиях особенно важна защита помещений от структурного шума (распространяющегося по конструкциям здания). Его источником может быть производственное оборудование, которое имеет жесткую связь с ограждающими конструкциями. Ослабление передачи структурного шума достигается виброизоляцией и вибропоглощением.

Хорошей защитой от ударного шума в зданиях является устройство «плавающих» полов. Архитектурно-планировочные решения во многих случаях предопределяют акустический режим производственных помещений, облегчая или затрудняя решение задач по их акустическому благоустройству.

Шумовой режим производственных помещений обусловлен размерами, формой, плотностью и видами расстановки машин и обору- дования, наличием звукопоглощающего фона и т.д. Планировочные мероприятия должны быть направлены на локализацию звука и уменьшение его распространения. Помещения с источниками высокого уровня шума по возможности следует группировать в одной зоне здания, примыкающей к складским и вспомогательным помещениям, и отделять коридорами пли подсобными помещениями.

Учитывая, что с помощью технических средств не всегда удается снижать уровни шума на рабочих местах до нормативных значений, необходимо применять средства индивидуальной защиты органа слуха от шума (антифоны, заглушки). Эффективность средств индивидуальной защиты может быть обеспечена правильным подбором в зависимости от уровней и спектра шума, а также контролем за условиями их эксплуатации.

В комплексе мероприятий по защите человека от неблагоприятного действия шума определенное место занимают медицинские средства профилактики. Важнейшее значение имеет проведение предварительных и периодических медицинских осмотров.

Противопоказаниями к приему на работу, сопровождаемую шумовым воздействием, служат:

Стойкое понижение слуха (хотя бы на одно ухо) любой этиологии;

Отосклероз и другие хронические заболевания уха с неблагоприятным прогнозом;

Нарушение функции вестибулярного аппарата любой этиологии, в том числе, болезнь Меньера.

Принимая во внимание значение индивидуальной чувствительности организма к шуму, исключительно важным является дис- пансерное наблюдение за рабочими первого года работы в условиях шума.

Одним из направлений индивидуальной профилактики шумовой патологии является повышение сопротивляемости организма рабочих к неблагоприятному действию шума. С этой целью рабочим шумных профессий рекомендуется ежедневный прием витаминов группы В в количестве 2 мг и витамина С в количестве 50 мг (продолжительность курса 2 недели с перерывом в неделю). Следует также рекомендовать введение регламентированных дополнительных перерывов с учетом уровня шума, его спектра и наличия средств индивидуальной защиты.

При нормировании допустимого звукового давления на рабочих местах частотный спектр шума разбивают на девять частотных полос.

Нормируемыми параметрами постоянного шума являются:

- уровень звукового давления L, дБ, в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц;

- уровень звука Ьд , дБ А.

Нормируемыми параметрами непостоянного шума являются:

- эквивалентный (по энергии) уровень звука Ьд экв, дБ А,

- максимальный уровень звука Ьд макс, дБ А.

Превышение хотя бы одного из указанных показателей квали­фицируется как несоответствие настоящим санитарным нормам.

В соответствии с СанПиН 2.2.4/2.1.8.10-32-2002 предельно до­пустимые уровни шума нормируются по двум категориям норм шума: ПДУ шума на рабочих местах и ПДУ шума в помещениях жилых, общественных зданий и на территории жилой застройки.

ПДУ звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности представле­ны в табл. 8.4.

Таблица 8.4 Предельна допустимые уровни звука и эквивалентные уровни звука на рабочих местах

ПДУ звукового давления в октавных полосах частот, уровни звука и эквивалентные уровни звука представлены в прил. 2 к СанПиН 2.2.4/2.1.8.10-32-2002.


211 Для тонального и импульсного шума, а также шума, созда­ваемого в помещениях установками кондиционирования воздуха, вентиляции и воздушного отопления, ПДУ должны приниматься на 5 дБ (дБА) меньше значений, указанных в табл. 8.4. настоящего па­раграфа и прил. 2 к СанПиН 2.2.4/2.1.8.10-32-2002.

Максимальный уровень звука для колеблющегося и прерыви­стого шума не должен превышать 110 дБ А. Запрещается даже крат­ковременное пребывание в зонах с уровнем звука или уровнем звуко­вого давления в любой октавной полосе свыше 135 дБ А (дБ).



ПДУ шума в помещениях жилых, общественных зданий и на территории жилой застройки. Допустимые значения уровней зву­кового давления в октавных полосах частот эквивалентных и макси­мальных уровней звука проникающего шума в помещения жилых и общественных зданий и шума на территории жилой застройки уста­навливаются согласно прил. 3 к СанПиН 2.2.4/2.1.8.10-32-2002.

Средстваиметодызащитыотшума

Борьба с шумом на производстве осуществляется комплексно и включает меры технологического, санитарно-технического, лечебно-профилактического характера.

Классификация средств и методов защиты от шума приведена в ГОСТ 12.1.029-80 ССБТ «Средства и методы защиты от шума. Класси­фикация», СНиП II-12-77 «Защита от шума», которые предусматри­вают защиту от шума следующими строительно-акустическими методами:

а) звукоизоляцией ограждающих конструкций, уплотнением при­
творов окон, дверей, ворот и т.п., устройством звукоизолированных ка­
бин для персонала; укрытием источников шума в кожухи;

б) установкой в помещениях на пути распространения шума
звукопоглощающих конструкций и экранов;

в) применением глушителей аэродинамического шума в двига­
телях внутреннего сгорания и компрессорах; звукопоглощающих об­
лицовок в воздушных трактах вентиляционных систем;

г) созданием шумозащитных зон в различных местах нахожде­
ния людей, использованием экранов и зеленых насаждений.

Ослабление шума достигается путем использования под полом упругих прокладок без жесткой их связи с несущими конструкциями зданий, установкой оборудования на амортизаторы или специально изолированные фундаменты. Широко применяются средства звукопо­глощения - минеральная вата, войлочные плиты, перфорированный картон, древесно-волокнистые плиты, стекловолокно, а также актив­ные и реактивные глушители (рис. 8.3.).

Глушители аэродинамического шума бывают абсорбционными, реактивными (рефлексными) и комбинированными. В абсорбционных




Г г г


Рис. 8.3. Глушители шума:

а - абсорбционного трубчатого типа; б -абсорбционного

сотового типа; г-абсорбционного экранного типа;

д - реактивного камерного типа; е - резонансный;

ж - комбинированного типа; 1 - перфорированные трубки;

2 - звукопоглощающий материал; 3 - стеклоткань;

4 - расширительная камера; 5 - резонансная камера

глушителях затухание шума происходит в порах звукопоглощающего материала. Принцип работы реактивных глушителей основан на эф­фекте отражения звука в результате образования «волновой пробки» в элементах глушителя. В комбинированных глушителях происходит как поглощение, так и отражение звука.

Звукоизоляция является одним из наиболее эффективных и рас­пространенных методов снижения производственного шума на пути его распространения. С помощью звукоизолирующих устройств (рис. 8.4) легко снизить уровень шума на 30...40 дБ. Эффективными звукоизо­лирующими материалами являются металлы, бетон, дерево, плотные пластмассы и т.п.




в А
А Б
/г? Я7^^-я/

Рис. 8.4. Схемы звукоизолирующих устройств:

а - звукоизолирующая перегородка; б - звукоизолирующий кожух;

в - звукоизолирующий экран; А - зона повышенного шума;

Б - защищаемая зона; 1 - источники шума;

2 - звукоизолирующая перегородка; 3 - звукоизолирующий кожух;

4 - звукоизолирующая облицовка; 5 - акустический экран


Для снижения шума в помещении на внутренние поверхности наносят звукопоглощающие материалы, а также размещают в поме­щении штучные звукопоглотители.

Звукопоглощающие устройства бывают пористыми, пористо-волокнистыми, с экраном, мембранные, слоистые, резонансные и объемные. Эффективность применения различных звукопоглощаю­щих устройств определяется в результате акустического расчета с учетом требований СНиП II-12-77. Для достижения максимального эффекта рекомендуется облицовывать не менее 60% общей площади ограждающих поверхностей, а объемные (штучные) звукопоглотите­ли - располагать как можно ближе к источнику шума.

Снизить неблагоприятное воздействие шума на рабочих, воз­можно сократив время их нахождения в шумных цехах, рационально распределив время труда и отдыха и т.д. Время работы подростков в условиях шума регламентировано: для них необходимо устраивать обязательные 10... 15-минутные перерывы, во время которых они долж­ны отдыхать в специально выделенных комнатах вне шумового воз­действия. Такие перерывы устраиваются для подростков, работающих первый год, через каждые 50 мин - 1ч работы, второй год - через 1,5 ч, третий год - через 2 ч работы.

Зоны с уровнем звука или эквивалентным уровнем звука выше 80 дБ А должны быть обозначены знаками безопасности.

Защита работающих от шума осуществляется коллективными средствами и методами и индивидуальными средствами.

Основными источниками вибрационного (механического) шума машин и механизмов являются зубчатые передачи, подшипники, соуда­ряющиеся металлические элементы и т.п. Снизить шум зубчатых пе­редач можно повышением точности их обработки и сборки, заменой материала шестерен, применением конических, косозубых и шеврон­ных передач. Снизить шум станков можно применением быстроре­жущей стали для резца, смазочно-охлаждающих жидкостей, заменой металлических частей станков пластмассовыми и т.д.

Для снижения аэродинамического шума используют специаль­ные шумоглушащие элементы с криволинейными каналами. Снизить аэродинамический шум можно улучшением аэродинамических харак­теристик машин. Дополнительно применяются средства звукоизоля­ции и глушители.

Акустическая обработка обязательна в шумных цехах машино­строительных заводов, цехах ткацких фабрик, машинных залах ма­шиносчетных станций и вычислительных центров.

Новым методом снижения шума является метод «антизвука» (равного по величине и противоположного по фазе звука). В результа­те интерференции основного звука и «антизвука» в некоторых местах


шумного помещения можно создать зоны тишины. В месте, где необ­ходимо уменьшить шум, устанавливается микрофон, сигнал от которого усиливается и излучается определенным образом расположенными динамиками. Уже разработан комплекс электроакустических приборов для интерференционного подавления шума.

Применение средств индивидуальной защиты от шума целесо­образно в тех случаях, когда средства коллективной защиты и другие средства не обеспечивают снижение шума до допустимых уровней.

СИЗ позволяют снизить уровень воспринимаемого звука на 0...45 дБ, причем наиболее значительное глушение шума наблюдает­ся в области высоких частот, которые наиболее опасны для человека.

Средства индивидуальной защиты от шума подразделяются на противошумные наушники, закрывающие ушную раковину снаружи; противошумные вкладыши, перекрывающие наружный слуховой про­ход или прилегающие к нему; противошумные шлемы и каски; проти­вошумные костюмы. Противошумные вкладыши делают из твердых, эластичных и волокнистых материалов. Они бывают однократного и многократного пользования. Противошумные шлемы закрывают всю голову, они применяются при очень высоких уровнях шума в сочета­нии с наушниками, а также противошумными костюмами.

УЛЬТРАЗВУКИИНФРАЗВУК

Ультразвук - упругие колебания с частотами выше диапазона слышимости человека (20 кГц), распространяющиеся в виде волны в газах, жидкостях и твердых телах или образующие в ограниченных областях этих сред стоячие волны.

Источники ультразвука - все виды ультразвукового техноло­гического оборудования, ультразвуковые приборы и аппаратура про­мышленного и медицинского назначения.

Нормируемыми параметрами контактного ультразвука в со­ответствии с СН 9-87 РБ 98 являются уровни звукового давления в третьоктавных полосах со среднегеометрическими частотами 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 50,0; 63,0; 80,0; 100,0 кГц (табл. 8.5).

Таблица 8.5

Предельно допустимые уровни звукового давления воздушного ультразвука на рабочих местах

Вредное воздействие ультразвука на организм человека про­является в функциональном нарушении нервной системы, изменении


215 давления, состава и свойства крови. Работающие жалуются на голов­ные боли, быструю утомляемость и потерю слуховой чувствительности.

Основными документами, регламентирующими безопасность при работе с ультразвуком, являются ГОСТ 12.1.001-89 ССБТ «Ультразвук. Общие требования безопасности» и ГОСТ 12.2.051-80 ССБТ «Обору­дование технологическое ультразвуковое. Требования безопасности», а также СН 9-87 РБ 98 «Ультразвук, передающийся воздушным путем. Предельно допустимые уровни на рабочих местах», СН 9-88 РБ 98 «Ультразвук, передающийся контактным путем. Предельно допустимые уровни на рабочих местах».

Запрещается непосредственный контакт человека с рабочей по­верхностью источника ультразвука и с контактной средой во время возбуждения в ней ультразвука. Рекомендуется применять дистанци­онное управление; блокировки, обеспечивающие автоматическое от­ключение в случае открытия звукоизолирующих устройств.

Для защиты рук от неблагоприятного воздействия контактного ультразвука в твердых и жидких средах, а также от контактных смазок необходимо применять нарукавники, рукавицы или перчатки (наружные резиновые и внутренние хлопчатобумажные). В качестве СИЗ применяются противошумы (ГОСТ 12.4.051-87 ССБТ «Средства индивидуальной защиты органов слуха. Общие технические требова­ния и методы испытаний»).

К работе с источниками ультразвука допускаются лица не мо­ложе 18 лет, имеющие соответствующую квалификацию, прошедшие обучение и инструктаж по технике безопасности.

Для локализации ультразвука обязательным является приме­нение звукоизолирующих кожухов, полукожухов, экранов. Если эти меры не дают положительного эффекта, то ультразвуковые установки нужно размещать в отдельных помещениях и кабинах, облицованных звукопоглощающими материалами.

Организационно-профилактические мероприятия заключаются в проведении инструктажа работающих и установлении рациональ­ных режимов труда и отдыха.

Инфразвук - область акустических колебаний в диапазоне час­тот ниже 20 Гц. В условиях производства инфразвук, как правило, со­четается с низкочастотным шумом, в ряде случаев - с низкочастот­ной вибрацией. В воздухе инфразвук мало поглощается и поэтому способен распространяться на большие расстояния.

Многие явления природы (землетрясения, извержения вулканов, морские бури) сопровождаются излучением инфразвуковых колебаний.

В производственных условиях инфразвук образуется, главным образом, при работе тихоходных крупногабаритных машин и механиз­мов (компрессоров, дизельных двигателей, электровозов, вентиляторов,


турбин, реактивных двигателей и др.), совершающих вращательное или возвратно-поступательное движение с повторением цикла менее чем 20 раз в секунду (инфразвук механического происхождения).

Инфразвук аэродинамического происхождения возникает при турбулентных процессах в потоках газов или жидкостей.

В соответствии с СанПиН 2.2.4/2.1.8.10-35-2002 нормируемы­ми параметрами постоянного инфразвука являются уровни звуко­вого давления в октавных полосах частот со среднегеометрическими частотами 2, 4, 8,16 Гц.

Общий уровень звукового давления - величина, измеряемая при включении на шумомере частотной характеристики «линейная» (от 2 Гц) или рассчитанная путем энергетического суммирования уров­ней звукового давления в октавных полосах частот без корректирую­щих поправок; измеряется в дБ (децибелах) и обозначается дБ Лин.

ПДУ инфразвука на рабочих местах, дифференцированных для различных видов работ, а также допустимые уровни инфразвука в жилых и общественных помещениях и на территории жилой застройки устанавливаются согласно прил. 1 к СанПиН 2.2.4/2.1.8.10-35-2002.

Инфразвук оказывает неблагоприятное воздействие на весь ор­ганизм человека, в том числе и на орган слуха, понижая слуховую чувствительность на всех частотах.

Длительное воздействие инфразвуковых колебаний на орга­низм человека воспринимается как физическая нагрузка и приводит к появлению утомляемости, головной боли, вестибулярных наруше­ний, нарушений сна, психическим расстройствам, нарушению функ­ций центральной нервной системы и т.д.

Низкочастотные колебания с уровнем инфразвукового давления свыше 150 дБ совершенно не переносятся человеком.

Меры по ограничению неблагоприятного влияния инфразвука на работающих (СанПиН 11-12-94) включают в себя: ослабление инфразвука в его источнике, устранение причин воздействия; изоля­цию инфразвука; поглощение инфразвука, постановку глушителей; индивидуальные средства защиты; медицинскую профилактику.

Борьба с неблагоприятным воздействием инфразвука должна вестись в тех же направлениях, что и борьба с шумом. Наиболее целе­сообразно уменьшать интенсивность инфразвуковых колебаний на стадии проектирования машин или агрегатов. Первостепенное зна­чение в борьбе с инфразвуком имеют методы, снижающие его возник­новение и ослабление в источнике, так как методы, использующие звукоизоляцию и звукопоглощение, малоэффективны.

Измерение инфразвука производится с использованием шумо-меров (ШВК-1) и фильтров (ФЭ-2).


ПРОИЗВОДСТВЕННЫЕВИБРАЦИИ

Вибрация - сложный колебательный процесс, возникающий при периодическом смещении центра тяжести какого-либо тела от положения равновесия, а также при периодическом изменении фор­мы тела, которую оно имело в статическом состоянии.

Вибрация возникает под действием внутренних или внешних динамических сил, вызванных плохой балансировкой вращающихся и движущихся частей машин, неточностью взаимодействия отдель­ных деталей узлов, ударными процессами технологического характе­ра, неравномерной рабочей нагрузкой машин, движением техники по неровности дороги и т.д. Вибрации от источника передаются на другие узлы и агрегаты машин и на объекты защиты, т.е. на сиденья, рабочие площадки, органы управления, а вблизи стационарной техники- и на пол (основание). При контакте с колеблющимися объектами вибрации передаются на тело человека.

В соответствии с ГОСТ 12.1.012-90 ССБТ «Вибрационная безо­пасность. Общие требования» и СанПиН 2.2.4/2.1.8.10-33-2002 «Про­изводственная вибрация, вибрация в помещениях жилых и общест­венных зданий» вибрация делится на общую, локальную и фоновую.

Общая вибрация передается через опорные поверхности на тело стоящего или сидящего человека. Общую вибрацию по источнику возникновения классифицируют на категории.

Категория 1 - транспортные вибрации, воздействующие на че­ловека на рабочих местах транспортных средств (тракторов, сельхоз­машин, автомобилей, в том числе тягачей, скреперов, грейдеров, кат­ков, снегоочистителей, самоходных машин).

Категория 2 - транспортно-технологические вибрации, воздей­ствующие на человека на рабочих местах машин с ограниченной под­вижностью, которые перемещаются только по специально подготов­ленным поверхностям производственных помещений, площадок. К источникам транспортно-технологической вибрации относят: экскава­торы, краны, машины для загрузки, бетоноукладчики, напольный производственный транспорт, рабочие места водителей легковых ав­томобилей, автобусов и т.д.

Категория 3 - технологические вибрации, воздействующие на человека на рабочих местах стационарных машин или передающиеся на рабочие места, не имеющие источников вибрации. К источникам технологических вибраций относят: металле- и деревообрабатываю­щие станки, кузнечно-прессовое оборудование, электрические маши­ны, вентиляторы, буровые станки, сельхозмашины и т.д.

Локальная вибрация передается через руки человека или дру­гие части его тела, контактирующие с вибрирующими поверхностями.


К виброопасному оборудованию относятся отбойные молотки, бетоно-

ломы, трамбовки, гайковерты, шлифовальные машины, дрели и др.

Фоновая вибрация - вибрация, регистрируемая в точке изме­рения и не связанная с исследуемым источником.

Предельно допустимый уровень вибрации - уровень параметра вибрации, при котором ежедневная (кроме выходных дней) работа, но не более 40 ч в неделю в течение всего рабочего стажа не должна вы­зывать заболеваний или отклонений в состоянии здоровья, обнару­живаемых современными методами исследований, в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ вибрации не исключает нарушения здоровья у сверхчувствительных лиц.

Вибрацию характеризуют следующие параметры:

- частота колебаний f, Гц - количество циклов колебаний в единицу времени;

- амплитуда смещения А, ж - наибольшее отклонение колеб­лющейся точки от положения равновесия;

- виброскорость v, м/с - максимальное из значений скорости колеблющейся точки;

- виброускорение а, м/с 2 - максимальное из значений ускоре­ний колеблющейся точки.

Виброскорость и виброускорение определяются по формулам v = 2rfA, a=(2nf) 2 .

Гигиеническую оценку вибрации, воздействующей на человека в производственных условиях, по санитарным нормам рекомендуют производить частотным (спектральным) анализом, интегральной оценкой по частоте нормируемого параметра и дозой вибрации .

Основными нормативными документами в области вибрации являются ГОСТ 12.1.012-90 ССБТ «Вибрационная безопасность. Общие требования», а также СанПиН 2.2.4/2.1.8.10-33-2002.

Основным методом, характеризующим вибрационное воздейст­вие на человека, является частотный анализ.

локальной вибрации уста­навливается в виде октавных полос со среднегеометрическими часто­тами 8; 16; 31,5; 63; 125; 250; 500 и 1000 Гц.

Нормируемый диапазон частот для общей вибрации, в зависи­мости от категории, устанавливается в виде октавных или третьок-тавных полос со среднегеометрическими частотами 0,8; 1,0; 1,25; 1,6; 2,0; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16, 20; 25; 31,5; 40; 50, 63, 80 Гц.

Нормируемыми параметрами постоянной вибрации являются:

Средние квадрэтические значения виброускорения и вибро­
скорости, измеряемые в октавных (третьоктавных) полосах частот,
или их логарифмические уровни;


Корректированные по частоте значения виброускорения и виброскорости или их логарифмические уровни.

Нормируемыми параметрами непостоянной вибрации являются эквивалентные (по энергии), корректированные по частоте значения виброускорения и виброскорости, или их логарифмические уровни.

Предельно допустимые величины нормируемых параметров общей и локальной производственной вибрации при длительности вибрационного воздействия 480 мин (8 ч) приведены в табл. СанПиН 2.2.4/2.1.8.10-33-2002.

При частотном {спектральном) анализе нормируемыми па­раметрами являются средние квадратичные значения виброскорости (и их логарифмические уровни) или виброускорения для локальной вибрации в октавных полосах частот, а для общей вибрации в октав-ных или 1/3-октавных полосах частот.

Вибрацию, воздействующую на человека, нормируют отдельно для каждого установленного направления, учитывая, кроме того, при общей вибрации ее категорию, а при локальной - время фактическо­го воздействия.

Действие вибраций на организм человека. Местная вибрация малой интенсивности может оказать благоприятное воздействие на организм человека: восстановить трофические изменения, улучшить функциональное состояние центральной нервной системы, ускорить заживление ран и т.п.

Увеличение интенсивности колебаний и длительности их воз­действия вызывают изменения в организме работающего. Эти из­менения (нарушения центральной нервной и сердечно-сосудистой систем, появление головных болей, повышенная возбудимость, сни­жение работоспособности, расстройство вестибулярного аппарата) мо­гут привести к развитию профессионального заболевания - вибраци­онной болезни.

Наиболее опасны вибрации с частотами 2...30 Гц, так как они вызывают резонансные колебания многих органов тела, имеющих в этом диапазоне собственные частоты.

Мероприятия по защите от вибраций подразделяют на техни­ческие, организационные и лечебно-профилактические.

К техническим мероприятиям относят устранение вибраций в источнике и на пути их распространения. Для уменьшения вибра­ции в источнике на стадии проектирования и изготовления машин предусматривают благоприятные вибрационные условия труда. Заме­на ударных процессов на безударные, применение деталей из пласт­масс, ременных передач вместо цепных, выбор оптимальных рабочих режимов, балансировка, повышение точности и качества обработки приводят к снижению вибраций.


При эксплуатации техники уменьшения вибраций можно дос­тигнуть путем своевременной подтяжки креплений, устранения люф­тов, зазоров, качественной смазки трущихся поверхностей и регули­ровкой рабочих органов.

Для уменьшения вибраций на пути распространения применя­ют вибродемпфирование, виброгашение, виброизоляцию.

Вибродемпфирование - уменьшение амплитуды колебаний де­талей машин (кожухов, сидений, площадок для ног) вследствие нане­сения на них слоя упруговязких материалов (резины, пластиков и т.п.). Толщина демпфирующего слоя обычно в 2...Зраза превышает тол­щину элемента конструкции, на которую он наносится. Вибродемп­фирование можно осуществлять, используя двухслойные материалы: стал!.-алюминий, сталь-медь и др.

Виброгашение достигается при увеличении массы вибрирующе­го агрегата за счет установки его на жесткие массивные фундаменты или на плиты (рис. 8.5), а также при увеличении жесткости конструк­ции путем введения в нее дополнительных ребер жесткости.

Одним из способов подавления вибраций является установка динамических виброгасителей которые крепятся на вибрирующем аг­регате, поэтому в нем в каждый момент времени возбуждаются коле­бания, находящиеся в противофазе с колебаниями агрегата (рис. 8.6).

Рис. 8.5. Установка агрегатов на виброгасящем Рис. 8.6. Схема

основании: а - на фундаменте и грунте; динамического

б - на перекрытии виброгасителя

Недостаток динамического виброгасителя - его способность по­давлять колебания только определенной частоты (соответствующей его собственной).

Виброизоляция ослабляет передачу колебаний от источника на основание, пол, рабочую площадку, сиденье, ручки механизированно­го ручного инструмента за счет устранения между ними жестких свя­зей и установки упругих элементов- виброизоляторов. В качестве виброизоляторов применяют стальные пружины или рессоры, про­кладки из резины, войлока, а также резинометаллические, пружинно-

Чтобы исключить контакт ра­ботников с вибрирующими поверх­ностями, за пределами рабочей зоны устанавливают ограждения, преду­преждающие знаки, сигнализацию. К организационным меро­приятиям по борьбе с вибрацией относят рациональное чередование режимов труда и отдыха. Работу с вибрирующим оборудованием це­лесообразно выполнять в теплых помещениях с температурой возду­ха не менее 16 °С, так как холод усиливает действие вибрации.

К работе с вибрирующим оборудованием не допускаются лица моложе 18 лет и беременные женщины. Сверхурочная работа с виб­рирующим оборудованием, инструментом запрещена.

К лечебно-профилактическим мероприятиям относят производ­ственную гимнастику, ультрафиолетовое облучение, воздушный обог­рев, массаж, теплые ванночки для рук и ног, прием витаминных пре­паратов (С, В) и т.д.

Из СИЗ применяют рукавицы, перчатки, спецобувь с виброза­щитными упругодемпфирующими элементами и др.

ОСВЕЩЕНИЕРАБОЧИХМЕСТ

Реферат на тему:

«НОРМИРОВАНИЕ ШУМА»

Измерение шума осуществляется двумя методами:

По предельному спектру шума (в основном, для постоянных шумов в стандартных октавных полосах со среднегеометрическими частотами – 63, 125, 250, 500, 1000, 2000, 8000 Гц);

По уровню звука в децибелах «А» шумомером (дБА), измеренного при включении корректировочной частотной характеристики «А», (для приблизительной оценки шума – средне-чувствительного слуха человека).

Уровни звукового давления на рабочих местах в нормируемом частотном диапазоне не должны превышать значений, указанных в ГОСТ 12.1.003-83 (общий уровень шума для оценки постоянного шума и интегрально-эквивалентная оценка для непостоянного шума).

Нормируемой характеристикой постоянного шума на рабочих местах являются уровни звукового давления L, дБ в октавных полосах со среднегеометрическими частотами 63, 125, 250, 1000, 2000, 4000 и 8000 Гц. Используется также принцип, который базируется на уровне звука в дБА и измеряется при включении коррективной частотной характеристики «А» шумомера. В этом случае осуществляется интегральная оценка всего шума в отличие от спектральной. Согласно ДСН 3.3.6-037-99, ГОСТ 12.003-83, ССБТ «Шум. Общие требования безопасности» и СН 32.23-85 «Санитарные нормы допустимого шума на рабочих местах» допустимые уровни звукового давления на рабочих местах следует принимать для широкополосного шума по таблице 2.5.1.; для непостоянного – на 5 дБ меньше значений приведенных в таблице 2.5.1.; для шума, который образуется в результате кондиционирования или вентиляции воздуха в помещениях – на 5 дБ меньше значений, указанных в таблице 2.5.1.


Таблица 2.5.1.

Допустимые уровня шума

Рабочее место Уровень звукового давления, дБ в активных полосах с среднегеометрической частотой шума, Гц Уровень звука и эквива-лентный уровень, дБА
63 125 250 500 1000 2000 4000 8000
Помещения конструкторских бюро, программистов, вычислительных машин, лабораторий для теоретических работ и обработки эксперементальных данных, прием больных в медпунктах. 71 61 54 49 45 42 40 38 50
Помещения управления, рабочие конторы. 79 70 68 58 55 52 50 49 60
Кабинки наблюдений и дистанционного управления: без речевой связи - по телефону; с речевой связью - по телефону. 94 87 82 78 75 73 71 70 80
83 74 68 63 60 17 55 54 65
Помещения и отделы точной сборки, помещения для выполнения эксперементальных работ 94 87 82 78 75 73 71 70 80
Постоянные рабочие места и рабочие зоны в производственных помещениях и на территориях предприятий. 95 87 82 78 75 73 71 69 80

Уровень звука, который создается предприятием или транспортом на территории жилой застройки, определяется санитарными нормами, а нормирование шума в жилых домах и зданиях общественного назначения - по СНиП 2-12-77.

С учетом тяжести и напряженности труда допустимые уровни шума должны отвечать значениям, приведенным в таблице 2.5.2.

Шум в учебных аудиториях, читальных залах не должен превышать 55 дБА, а на улице более 70 дБА. Допустимый уровень шума на улице днем не должен превышать 50 дБА, ночью – 40 дБА. Допустимый уровень шума в жилых помещениях не должен превышать днем – 40 дБА, а ночью – 30 дБА.

Уровень шума в 110 дБА ведет к нарушению слуховых органов, поражению центральной нервной системы, ослаблению защитных функций организма. Запрещается приближаться без средств защиты к зонам подверженным воздействию шума 135 дБА. Уровень шума в 140 дБА вызывает болевые ощущения, в 155 дБА вызывает ожоги, в 180 дБА – смерть.

Таблица 2.5.2.

Оптимальные уровни звука на рабочих местах при выполнении работ различной категории тяжести и напряженности

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ШУМА

Для измерения шума применяют микрофоны, различные приборы шумомеры. В шумомерах звуковой сигнал преобразовывается в электрические импульсы, которые усиливаются и после фильтрации регистрируются на шкале прибором и самописцем.

Для замеров уровней звукового давления и звуковой интенсивности используют следущие приборы: шумомер типа Ш-71 с октавными фильтрами ОФ-5 и ОФ-6; шумомер PS 1-202 с октавными фильтрами OF-101 фирмы RET (Германия); шумомеры типа 2203, 2209 с октавными фильтрами типа 1613 фирмы «Брюль», «Кер» (Дания); измерители шума и вибрации ИШВ-1 и ВШВ-003.

Шумовые характеристики технологического оборудования определяют на расстоянии 1 м от контура машин. На рабочем месте измерение шума следует производить на уровне уха (на расстоянии 5 см от него), когда рабочий находится в основной рабочей позе.

Современные шумомеры имеют корректирующие частотные характеристики «А» и «Лин». Линейная объективная характеристика (Лин) используется при измерении уровней звукового давления в октавных полосах 63 … 8000 Гц – по всему частотному диапазону.

Для того чтобы показатели шумомера приближались к субъективным ощущениям громкости , используется характеристика шумомера «А», которая примерно соответствует чувствительности органа слуха при разной громкости. Диапазон работы шумомера 30- 140 дБ. Частотный анализ шума производится шумомером с присоединенным анализатором спектра (набор акустических фильтров). Каждый фильтр пропускает узкую полосу частот звука, определяемую верхней и нижней границей октавных полос. При этом в производственных условиях регистрируется лишь уровень звука в дБА, а спектральный анализ ведется по магнитофонной записи шума.

Борьба с шумом осуществляется различными методами и средствами:

1. снижение мощности звукового излучения машин и агрегатов;

2. локализация действия звука конструктивными и планировочными решениями;

3. организационно-техническими мероприятиями;

4. лечебно-профилактическими мерами;

5. применением средств индивидуальной защиты работающих.

Условно все средства защиты от шума подразделяются на коллективные и индивидуальные.

Коллективные средства защиты:

Средства, снижающие шум в источнике;

Средства, снижающие шум на пути его распространения до защищаемого объекта.

Уменьшение шума в источнике возникновения является наиболее эффективным и экономичным, (позволяет снизить шум на 5-10 дБ):

Устранение зазоров в зубчатых соединениях;

Применение глобоидных и шевронных соединений как менее шумных;

Широкое использование, по возможности, деталей из пластмасс;

Устранение шума в подшипниках;

Замена металлических корпусов на пластмассовые;

Балансировка деталей (устранение дисбаланса);

Устранение перекосов в подшипниках;

Замена зубчатых передач на клиноременные;

Замена подшипников качения на скольжение (15дБ) и т.д.

Для уменьшения шума в арматурных цехах целесообразно: использование твердых пластмасс для покрытия поверхностей, соприкасающихся с арматурной проволокой; установка упругих материалов в местах падения арматуры; применение вибропоглощающих материалов в ограждающих поверхностях машин.

К технологическим мерам снижения уровня шума в источнике относятся: уменьшение амплитуды колебаний, скорости и т.д.

Средства и методы коллективной защиты, снижающие шум на пути его распространения подразделяются на:

Архитектурно- планировочные;

Акустические;

Организационно-технические.

Архитектурно-планировочные мероприятия по снижению шума.

1. С точки зрения борьбы с шумом в градостроительстве при проектировании городов необходимо четко осуществлять разделение территории на зоны: селитебную (жилую), промышленную, коммунально-складскую и внешнего транспорта, с соблюдением согласно нормативам санитарно-защитных зон при разработке генплана.

2. Правильная планировка производственных помещений должна производится с учетом изоляции помещения от внешних шумов и шумных производств. Производственные здания с шумными технологическими процессами следует размещать с подветренной стороны по отношению к другим зданиям и жилому поселку, и обязательно торцевыми сторонами к ним. {Взаимная ориентация зданий решается так, чтобы стороны зданий с окнами и дверями были против глухих сторон зданий. Оконные проемы таких цехов заполняются стеклоблоками, а вход делается с тамбурами и уплотнением по периметру.

3. Наиболее шумные и вредные производства рекомендуется комплектовать в отдельные комплексы с обеспечением разрывов между отдельными ближними объектами согласно санитарным нормам. Внутри помещения также объединяются с шумными технологиями, ограничивается число рабочих подверженных воздействию шума. Между зданиями с шумной технологией и другими зданиями предприятия необходимо соблюдать разрывы (не менее 100 м). Разрывы между цехами с шумной технологией и другими зданиями следует озеленить. Листва деревьев и кустарников служит хорошим поглотителем шума. Новые железнодорожные линии и станции следует отделять от жилой застройки защитной зоной шириной не менее 200 м. При устройстве вдоль линии шумозащитных экранов минимальная ширина защитной зоны равна 50 м. Жилая застройка должна располагаться на расстоянии не менее 100 м от края проезжей части скоростных дорог.