Главная · Сон · Сопряжение комплексных чисел. Комплексные числа и алгебраические действия над ними

Сопряжение комплексных чисел. Комплексные числа и алгебраические действия над ними

Рассмотрим квадратное уравнение .

Определим его корни .

Не существует действительного числа, квадрат которого равен -1. Но если формулой определить оператор i как мнимую единицу, то решение этого уравнения можно записать в виде . При этом и - комплексные числа, в которых -1 это действительная часть, 2 или во втором случае -2 – мнимая часть. Мнимая часть – это также действительное (вещественное) число. Мнимая часть, умноженная на мнимую единицу, означает уже мнимое число .

В общем виде комплексное число имеет вид

z = x + iy ,

где x, y – вещественные числа, – мнимая единица. В ряде прикладных наук, например, в электротехнике, электронике, теории сигналов мнимая единица обозначается через j . Вещественные числа x = Re{z} и y = Im{ z} называются вещественной и мнимой частями числа z. Выражение называется алгебраической формой записи комплексного числа.

Любое действительное число есть частный случай комплексного числа в виде . Мнимое число тоже частный случай комплексного числа .

Определение множества комплексных чисел С

Это выражение читается следующим образом: множество С , состоящее из элементов , таких что x и y принадлежат множеству действительных чисел R и - это мнимая единица. Отметим, что и т.д.

Два комплексных числа и равны, если и только если равны их действительные и мнимые части, т.е. и .

Комплексные числа и функции широко используются в науке и технике, в частности, в механике, анализе и расчете цепей переменного тока, аналоговой электронике, в теории и обработке сигналов, в теории автоматического управления и др. прикладных науках.

  1. Арифметика комплексных чисел

Сложение двух комплексных чисел состоит в сложении их действительных и мнимых частей, т.е.

Соответственно разность двух комплексных чисел

Комплексное число называется комплексно сопряженным числу z = x + iy.

Комплексно сопряженные числа z и z * отличаются знаками мнимой части. Очевидно, что

.

Любое равенство между комплексными выражениями остается справедливым, если в этом равенстве всюду i заменить на - i , т.е. перейти к равенству сопряженных чисел. Числа i и i алгебраически неразличимы, поскольку .

Произведение (умножение) двух комплексных чисел может быть вычислено следующим образом:

Деление двух комплексных чисел:

Пример :

  1. Комплексная плоскость

Комплексное число графически можно представить в прямоугольной системе координат. Зададим в плоскости прямоугольную систему координат (x, y).

На оси Ox будем располагать действительные части x , она называется действительной (вещественной) осью , на оси Oy –мнимые части y комплексных чисел. Она носит название мнимой оси . При этом каждому комплексному числу соответствует определенная точка плоскости, и такая плоскость называется комплексной плоскостью . Точке А комплексной плоскости будет соответствовать вектор ОА .

Число x называется абсциссой комплексного числа , число y ординатой .

Пара комплексно сопряженных чисел отображается точками, расположенными симметрично относительно действительной оси.



Если на плоскости задать полярную систему координат , то каждое комплексное число z определяется полярными координатами . При этом модуль числа – это полярный радиус точки, а угол - её полярный угол или аргумент комплексного числа z .

Модуль комплексного числа всегда неотрицательный. Аргумент комплексного числа не определяется однозначно. Главное значение аргумента должно удовлетворять условию . Каждой точке комплексной плоскости соответствует также общее значение аргумента . Аргументы, отличающиеся значением, кратным 2π, считаются равными. Аргумент числа нуль не определен.

Главное значение аргумента определяют по выражениям:

Очевидно, что

При этом
, .

Представление комплексного числа z в виде

называется тригонометрической формой комплексного числа.

Пример .

  1. Показательная форма комплексных чисел

Разложение в ряд Маклорена для функций действительного аргумента имеет вид:

Для экспоненциальной функции комплексного аргумента z разложение имеет аналогичный характер

.

Разложение в ряд Маклорена для экспоненциальной функции мнимого аргумента можно представить как

Получившееся тождество называется формулой Эйлера .

Для отрицательного аргумента оно имеет вид

Комбинируя эти выражения, можно определить следующие выражения для синуса и косинуса

.

Пользуясь формулой Эйлера, из тригонометрической формы представления комплексных чисел

можно получить показательную (экспоненциальную, полярную) форму комплексного числа, т.е. его представление в виде

,

где - полярные координаты точки с прямоугольными координатами (x, y ).

Число, сопряженное комплексному числу , в показательной форме записывается следующим образом .

Для показательной формы легко определить следующие формулы умножения и деления комплексных чисел

Т.е., в показательной форме произведение и деление комплексных чисел выполняется проще, чем в алгебраической форме. При умножении модули сомножителей перемножаются, а аргументы складываются. Это правило распространяется на любое число сомножителей. В частности, при умножении комплексного числа z на i вектор z поворачивается против часовой стрелки на 90

При делении модуль числителя делится на модуль знаменателя, и из аргумента числителя вычитается аргумент знаменателя.

Используя показательную форму комплексных чисел, можно получить выражения для известных тригонометрических тождеств. Например, из тождества

с помощью формулы Эйлера можно записать

Приравнивая действительную и мнимую части в данном выражении, получаем выражения для косинуса и синуса суммы углов

  1. Степени, корни и логарифмы комплексных чисел

Возведение комплексного числа в натуральную степень n производится по формуле

Пример . Вычислим .

Представим число в тригонометрической форме

Применяя формулу возведения в степень, получим

Положив в выражении значение r = 1, получим так называемую формулу Муавра , при помощи которой можно определять выражения синусов и косинусов кратных углов.

Корень n –й степени из комплексного числа z имеет n различных значений, определяемых по выражению

Пример . Найдем .

Для этого выразим комплексное число () к тригонометрической форме

.

По формуле вычисления корня из комплексного числа, получаем

Логарифм комплексного числа z – это число w , для которого . Натуральный логарифм комплексного числа имеет бесконечное множество значений и вычисляется по формуле

Состоит из действительной (косинусоидальной) и мнимой (синусоидальной) части. Такое напряжение можно представлять как вектор длиной U m , начальной фазой (углом) , вращающийся с угловой скоростью ω .

При этом если комплексные функции складываются, то складываются их вещественные и мнимые части. Если комплексная функция умножается на константу или вещественную функцию, то её вещественная и мнимая части умножаются на тот же множитель. Дифференцирование / интегрирование такой комплексной функции сводится к дифференцированию / интегрированию вещественной и мнимой части.

Например, дифференцирование выражения комплексного напряжения

заключается в умножении его на iω - вещественная часть функции f(z), а – мнимая часть функции. Примеры: .

Значение z изображается точкой в комплексной плоскости z, а соответствующее значение w - точкой в комплексной плоскости w . При отображении w = f(z) линии плоскости z переходят в линии плоскости w , фигуры одной плоскости в фигуры другой, но формы линий или фигур могут существенно измениться.