Главная · Сон · Тепловое воздействие. Тепловое воздействие на космический аппарат при наземной эксплуатации и в полете. История открытия явления

Тепловое воздействие. Тепловое воздействие на космический аппарат при наземной эксплуатации и в полете. История открытия явления

Хорошо известно, что изменение температуры может оказывать весьма существенное влияние на механические свойства материалов. Поэтому в задачах термомеханики при наличии температурных градиентов необходим учет температурной неоднородности. В некоторых случаях даже перепад в несколько градусов приводит к значительному изменению механических характеристик (мерзлые грунты, некоторые полимеры). В то же время существуют материалы, в которых заметное изменение свойств происходит при наличии градиентов температуры в несколько сотен градусов (горные породы, металлы и пр.). Некоторые экспериментальные данные по влиянию температуры на механические свойства металлов и сплавов приведены в работе . Ниже рассматриваются примеры температурных зависимостей механических характеристик металлов, горных пород и бетонов, а также способы их аппроксимации.

Металлы и сплавы. На рис. 1.2 приведены зависимости модуля упругости, предела текучести и предела прочности алюминиевого сплава от температуры. 11а рис. 1.3 приведена зависимость предела прочности от температуры для различных конструкционных сталей.

Рис. 1.2. Влияние температуры на модуль упругости Е, предел текучести ст г и предел прочности а в алюминиевого сплава 2024-ТЗ

Рис. 1.3.

Графики, приведенные на рис. 1.2 и 1.3, показывают, что в интервале между комнатной температурой и температурой приблизительно 200-300°С все механические характеристики меняются относительно слабо, причем иногда предел прочности в этом интервале увеличивается. Примерно с 200-300°С наблюдается значительное уменьшение как прочностных, так и деформационных свойств металлов. Понижение температуры для многих сталей приводит к увеличению предела текучести и предела прочности. При понижении температуры примерно до -200°С предел прочности сталей возрастает почти в два раза, а предел текучести увеличивается более чем в три раза, приближаясь к пределу прочности. Во многих случаях при низких температурах наблюдается хрупкое разрушение.

Грунты и горные породы. Многочисленные исследования были проведены по изучению влияния температуры на механические свойства грунтов и горных пород.

Изучение характера изменения модуля Юнга в грунтах (глины) в случае одноосного напряженного состояния при различных температурах [ 211 показало, что с увеличением температуры наблюдается снижение этой основной деформационной характеристики грунтов. Результаты соответствующих экспериментов приведены на рис. 1.4.

Аналогичные исследования проводились и для горных пород, но уже для случая трехосного сжатия и при значительно более высоких температурах, так как при сравнительно небольших температурах горные породы (например, базальт) практически не изменяют своих упругих свойств. Соответствующие зависимости показаны на рис. 1.5. Здесь, как и в предыдущем случае, при повышении температуры происходит весьма существенное снижение величины модуля упругости. Например, в граните модуль Юнга при комнатной температуре почти в три раза больше, чем при температуре 800°С. Для базальта это различие еще больше. Результаты полученных экспериментальных исследований можно с достаточной точностью аппроксимировать с помощью простой зависимости

где Е 0 - модуль упругости ненагретого материала; 5 - эмпирический коэффициент. На рис. 1.4 и 1.5 (для гранита) приведены аппроксимирующие зависимости (1.22). Можно заметить, что совпадение с экспериментальными данными достаточно хорошее. Для сверхтвердых пород тина базальта соотношение (1.22) может быть несколько уточнено:

Рис. 1.4.

Рис. 1.5.

Поскольку характер температурных зависимостей модуля упругости грунтов и горных пород во многом подобен зависимостям механических характеристик металлов и сплавов, показанным на рис. 1.2, 1.3, то соотношения типа (1.22) и (1.23) могут также использоваться для аппроксимации последних.

Бетон. Сведения о механических и теплофизических характеристиках бетонов различных составов, предназначенных для работы в условиях воздействия повышенных и высоких температур, приведены в работе . 11а рис. 1.6 приведены зависимости модуля упругости жаростойких бетонов от температуры в интервале 50- 1000°С, построенные на основании табличных данных, приведенных в работе . Можно видеть, что с ростом температуры в целом происходит падение модуля упругости, причем при температуре, приближающейся к 1000°С, модуль упругости для некоторых составов бетонов уменьшается в десять и более раз (кривые 2 и 3). Для некоторых бетонов в интервале температур 70-300°С наблюдается некоторое увеличение модуля упругости (кривые 3 и 4).

Рис. 1.6. Температурные зависимости модуля упругости бетонов различных составов (Е 0 - начальный модуль упругости)

Учитывая достаточно сложный и неодинаковый для разных бетонов характер изменения модуля упругости с температурой, трудно аппроксимировать рассматриваемые зависимости единой относительно простой формулой. Одним из способов аппроксимации таких зависимостей может быть полиномиальная функция

Выражение (1.24) имеет два достоинства. Первое заключается в возможности достижения требуемой точности при невысокой степени полинома (N= 2, 3), второе - в наличии стандартных подпрограмм для определения коэффициентов аппроксимирующего полинома методом наименьших квадратов, что позволяет легко автоматизировать данную процедуру.

При решении задач с температурными полями вынужденные (температурные) деформации, входящие в физические соотношения (1.12), (1.13), вычисляются по формуле

где а т - коэффициент линейного температурного расширения, в общем случае зависящий от температуры.

На рис. 1.7 показаны зависимости а,(Т) для некоторых составов бетонов. Различный температурный диапазон для разных кривых обусловлен пределами применимости того или иного бетона. Следует обратить внимание на существенную зависимость коэффициента линейного температурного расширения от температуры. При этом в случае кратковременного нагрева с ростом температуры коэффициент а т монотонно уменьшается и при достижении температуры 1000°С его значение в несколько раз меньше, чем при нормальной температуре. При длительном нагреве а т с увеличением температуры сначала растет, а затем монотонно уменьшается. Очевидно, что при больших температурных градиентах необходимо учитывать зависимость этого коэффициента от температуры.

Рис. 1.7. Зависимость а т бетона от температуры: сплошная линия - при кратковременном нагреве; пунктирная линия - при длительном нагреве

Для аппроксимации функций а,(7) в случае их монотонного изменения можно использовать зависимости типа (1.22) или (1.23), а для функций, показанных пунктиром на рис. 1.7, можно воспользоваться полиномом типа (1.24).

Как было отмечено выше, если распределение температуры в теле неоднородно, то в соответствующем температурном интервале механические свойства тела являются функциями координат, т.е. тело становится неоднородным по своим упругим и пластическим свойствам.

Для определения этой неоднородности, названной нами косвенной, сначала требуется решить краевую задачу для уравнения теплопроводности

где X - коэффициент теплопроводности; с - удельная теплоемкость; р - плотность; W - интенсивность источников тепла, отнесенных к единице объема. Таким образом, функции неоднородности определяются но формуле

где под F понимается любая механическая характеристика материала. Следует также заметить, что в некоторых случаях необходим учет термической неоднородности, например зависимости ЦТ). На рис. 1.8 согласно работе приведены соответствующие графики для бетонов разных составов. Можно заметить, что для большинства марок бетонов коэффициент теплопроводности близок к постоянному значению или является слаборастущей функцией (кривые 2-4). Однако в некоторых случаях этот коэффициент с ростом температуры может существенно уменьшаться (кривая 1).

Рис. 1.8.

Для аппроксимации такой зависимости, по-видимому, может использоваться функция типа (1.22).

Как отмечено в работе , воздействие температурного поля может вызвать неоднородность двух типов: а) существующую во время действия температуры; б) остающуюся после снятия температуры, если последняя была настолько велика, что привела к структурным изменениям материала.

Профилактика:

Обратить внимание на эргономическую проработку рабочего места.

1. Разместите монитор так, чтобы его верхняя точка находилась прямо перед вашими глазами или выше, что позволит держать голову прямо, и исключит развитие шейного остеохондроза. Расстояние от монитора до глаз должно быть не меньше 45 см;

2. Стул должен иметь спинку и подлокотники, а так же такую высоту, при которой ноги могут прочно стоять на полу. Идеальным будет приобретение кресла с регулирующейся высотой, в таком случае спинка позволит держать спину прямо, подлокотники дадут возможность отдохнуть рукам, правильное положение ног не будет мешать кровообращению в них;

3. Расположение часто используемых вещей не должно приводить к долгому нахождению в какой либо искривлённой позе;

4. Освещение рабочего места не должно вызывать блики на экране монитора. Нельзя ставить монитор рядом с окном, так чтобы вы одновременно видели и экран и то, что находится за окном.

5. При работе с клавиатурой, угол сгиба руки в локте должен быть прямым (90 градусов);

6. При работе с мышкой кисть должна быть прямой, и лежать на столе как можно дальше от края. Во время работу не забывайте о регулярных перерывах для отдыха, Ограничить количество времени.


1. Ионизирующее излучение как неблагоприятный фактор окружающей среды Естественный радиационный фон, его величина и составляющие. Гигиеническое значение радона.

Руководящие документы.

Руководящие документы.

1. Федеральный закон о радиационной безопасности №3-ФЗ

2. Нормы радиационной безопасности(НРБ 99) СП 2.6.1.758-99

3. Основные СП обеспечения радиационной безопасности.

4. Гигиениечские требования к устройству и эксплуатации рентгеновских кабинетов, аппаратов и проведению рентгенологических исследований. СанПиН 2.6.1.802-99

Радиационная гигиена–отрасль гигиенической науки,изучающая влияние ИИ на здоровье людей и разрабатывающая мероприятия по снижению его неблагоприятного воздействия.

Радиационная безопасность населения это состояние защищенности настоящего и будущего поколения людей от вредного для их здоровья воздействия ИИ.

ИИ - излучение, которое создаётся при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе, и образует при взаимодействии со средой ионы разных знаков. Мерой чувствительности к действию ИИ является радиочувствительность.

ИИ бывает корпускулярным(альфа, бета-частицы, космические лучи, протоны, нейтроны) и электромагнитным(гамма, рентгеновское излучение).Альфа излучение- ИИ,состоящее из альфа частиц(ядер гелия-2 протона и 2 нейтрона), испускаемое при ядерных превращениях.Бета излучение- электронное и позитронное ИИ, испускаемое при ядерных превращениях. Гамма-излучение - фотонное

ИИ делят на две группы:

1Закрытые-источники излучения, устройство которых исключает загрязнение окружающей среды РВ при предвидимых условиях их применения, но при нарушении рекомендуемой технологии или аварии они все же могут попадать в окружающую среду. К закрытым источникам ИИ относят: гамма-установки, рентгеновские аппараты, ампулы с РВ, металлические патроны с РВ, вплавленные в металл РВ.

2Открытые - источники излучения, при использовании которых возможно попадание РВ во внешнюю среду и ее загрязнение. К открытым источникам ИИ относят РВ в порошкообразном, растворенном или газообразном состоянии, применяемые после разгерметизации упаковки. Объекты, работающие только с закрытыми ИИ,могут размещаться внутри жилых кварталов без установления санитарно-защитных зон при условии наличия необходимых защитных ограждений. При работе с закрытыми источниками наибольшую опасность представляет внешнее облучение,т.е облучение организма от находящихся вне его ИИИ. Здесь опасны ИИ с большой длиной пробега, т.е. с высокой проникающей способностью (рентгеновское, гамма-излучение).

Лучевые нагрузки населения в современных условиях, в том числе вклад медицинских процедур с использованием НИИ. радиационный риск, методы его оценки.

2. Пищевые отравления немикробной этиологии. Причины их возникновения. Основные направления предупреждения.

К пищевым отравлениям относят заболевания различной природы, возникающие при употреблении пищи, содержащей болезнетворные микроорганизмы или их токсины либо другие ядовитые для организма вещества немикробной природы.

НЕМИКРОБНЫЕ ПИЩЕВЫЕ ОТРАВЛЕНИЯ

К этой группе относятся отравления несъедобными ядовитыми продуктами (грибы и дикорастущие растения), пищевыми продуктами, временно ставшими ядовитыми или частично приобретшими ядовитые свойства (соланин картофеля, бобы фасоли, горькие ядра косточковых плодов, органы животных), отравления, вызванные ядовитыми примесями в пищевых продуктах (соли тяжелых металлов, сорняки и ядохимикаты).

Отравления несъедобными продуктами растительного и животного происхождения Отравление грибами. Среди отравлений растительного происхождения наиболее часты заболевания, вызываемые грибами. В среднем около 15% случаев отравление грибами заканчиваются летальным исходом.

Профилактика: обязательное проваривание грибов, отвар не использовать. Отравление возможно и при употреблении съедобных грибов при их загрязнении микроорганизмами и длительном хранении. Грибы могут быть загрязнены и химическими соединениями (из почвы, посуды). Для профилактики необходимо знание технологии приготовления грибов. Профилактика: ограничение списка грибов, разрешенных для заготовки и продажи; допуск в заготовку и продажу только сортированных по отдельным видам грибов; ограничение видов грибов, допускаемых в продажу в сушеном виде; санпросвет работа с населением.

Ядра косточковых плодов (абрикосы, персики, сливы, вишни, черешня, кизил, горький миндаль). В ядрах этих растений постоянно присутствует гликозид амидалин, который при расщеплении выделяет синильную кислоту. Профилактика: санпросвет работа с разъяснением возможных грозных осложнений, наблюдение за детьми.

Микотоксикозы. Заболевания, возникающие в результате потребления пищевых продуктов, в которых размножились токсические грибки.

Эрготизм - отравление рожками спорыньи, поражающих рожь и, реже, пшеницу. Профилактика: контроль за содержанием токсина в муке, проведение агротехнических мероприятий.

Алиментарно-токсическая алейкия - возникает при употреблении продуктов из зерна злаков, перезимовавших под снегом на корню. Характерны диспепсические явления, далее развивается лейкопения и различные ангины, в т.ч. некротическая. Профилактика: запрет употребления перезимовавшего зерна.

Афлатоксикозы. После короткого инкубационного периода (до 2 суток) развиваются явления нейротоксикоза (нарушение координации движений, судороги, парезы), геморрагический синдром и прогрессирующий цирроз печени (самый сильный канцероген). Профилактика: контроль плесени в продуктах.

Пищевые отравления пестицидами. Пестициды (ядохимикаты) - синтетические химические вещества различной степени токсичности, применяемые в сельском хозяйстве для защиты культурных растений от сорняков, вредителей и болезней, а также для стимуляции роста, развития семян плодов и др. целей. Профилактика: полное исключение остаточного содержания пестицидов во внешней среде и обладающих выраженным кумулятивным действием; допускается остаточное количество тех веществ, которые не оказывают вредного воздействия; строгое выполнение инструкции по применению (назначение, концентрация, вид обработки, сроки); контроль за содержанием.

3. Социально-гигиеническое значение жилищ. Гигиенические требования к планировке, оборудованию и содержанию жилых зданий и помещений квартирного типа.

СанПиН 2.1.2.1002-00 (в ред. Изменения от 21.08.2007 N59)

Требования к жилым зданиям и помещениям общественного назначения, размещаемым в жилых зданиях:

1. Строительство жилых зданий должно проводиться по проектам, отвечающим требованиям настоящих правил.

3. Высота жилых помещений от пола до потолка в домах жилищного фонда социального использования должна быть не менее 2,5 м.

4. В жилых зданиях не допускается размещение объектов общественного назначения, оказывающих вредное воздействие на человека.

5. Помещения общественного назначения, встроенные в жилые здания, должны иметь входы, изолированные от жилой части здания.

6. При размещении в жилом здании помещений общественного назначения, инженерного оборудования и коммуникаций следует обеспечивать соблюдение гигиенических нормативов, в том числе по шумозащищенности жилых помещений.

Требования к содержанию жилых помещений

1. Не допускается:

Использование жилого помещения для целей, не предусмотренных проектной документацией;

Хранение и использование в жилых помещениях и в помещениях общественного назначения, размещенных в жилом здании, веществ и предметов, загрязняющих воздух;

Выполнение работ или совершение других действий, являющихся источниками повышенных уровней шума, вибрации, загрязнения воздуха, либо нарушающих условия проживания граждан в соседних жилых помещениях;

Захламление, загрязнение и затопление подвалов и технических подполий, лестничных пролетов и клеток, чердачных помещений, других мест общего пользования;

Использование бытовых газовых приборов для обогрева помещений.

2. Необходимо:

Своевременно принимать меры по устранению неисправностей инженерного и другого оборудования, расположенного в жилом помещении (систем водопровода, канализации, вентиляции, отопления, мусороудаления, лифтового хозяйства и пр.), нарушающих санитарно-гигиенические условия;

Обеспечивать своевременный вывоз бытовых отходов, содержать в исправном состоянии мусоропроводы и мусороприемные камеры;

Проводить мероприятия, направленные на предупреждение возникновения и распространения инфекционных заболеваний, связанных с санитарным состоянием жилого здания. При необходимости проводить мероприятия по уничтожению насекомых и грызунов (дезинсекция и дератизация).


1. Почва Ее гигиеническое и эпидемиологическое значение. Состав и свойства Источники антропогенного загрязнения. Критерии оценки санитарного состояния. Процессы самоочищения.

Под почвой подразумевают верхний слой поверхности Земли, состоящий из минеральных и органических веществ, заселенный большим количеством микроорганизмов.

Химический состав почвы.

Здоровой почвой называют легкопроницаемую, крупнозернистую незагрязненную почву. Почва считается здоровой, если содержание глины и песка в ней составляет 1:3, отсутствуют возбудители болезней, яйца гельминтов, а микроэлементы содержатся в количествах, не вызывающих эндемические заболевания.

К физическим свойствам почвы относятся:

1 Пористость (зависит от величины и формы зерен)

2 Капиллярность почвы . Способность почвы поднимать влагу.

3 Влагоемкость почвы - то есть способность почвы удерживать влагу: высокую влажность будет иметь чернозем, меньше подзолистая и еще меньше песчаная почва.

4 Гигроскопичность почвы - это способность притягивать водяные пары из воздуха.

5 Почвенный воздух.

В чистой почве содержится в основном кислорода и углекислый газ, в загрязненных почвах добавляется водород и метан.

6 Почвенная влага - существует в химически связанном, в жидком и газообразном состоянии. Влага почвы оказывает влияние на микроклимат и на выживание микроорганизмов в почве.

Эпидемиологическое значение.

Возбудители инфекционных заболеваний - их делят на 2 группы:

1.Постоянно обитающие в почве. К ним относятся возбудители газовой гангрены, сибирской язвы, столбняка, ботулизма, актиномикозов.

2.Временно находящиеся в почве микроорганизмы - это возбудители кишечных инфекция, возбудители тифо-паротифозных заболеваний, дизентерийные бактерии, холерный вибрион; возбудители туберкулеза и возбудители туляремии могут находится в почве и постоянно и временно.

Гигиеническое значение почвы

Почва обладает большой способностью инактивировать попадающие в нее вредные вещества и патогенные микроорганизмы за счет физико-химических процессов, микробиологического разложения, поглощения высшими растениями и почвенной фауной, т. е. активно участвует в процессах самоочищения.

Классификация почвенных загрязний:

Загрязнение почв - вид антропогенной деградации почв, при которой содержание химических веществ в почвах, подверженных антропогенному воздействию, превышает природный региональный фоновый уровень их содержания в почвах.

1) Мусором, выбросами, отвалами, отстойными породами.

2) Тяжёлыми металлами.

3) Пестицидами.

4) Микотоксинами.

5)Радиоактивными веществами.

Критерии оценки санитарного состояния :

1. Санитарно-химические критерии. Для санитарно-гигиенической оценки почвы также важно знать содеражине таких показателей загрязнения как нитриты, соли аммиака, нитаты, хлориды, сульфаты. Их концентрация или доза должна сравниваться с контрольной для данной местности почвой. Производится оценка почвенного воздуха на предмет содержания в нем водорода и метана наряду с углекислым газом и кислородом.2. Санитарно-бактериологические показатели: к ним относятся титры микроорганизмов. 3.Гельминтологическая оценка. В чистой почве не должно содержатся гельминтов, их яиц и личинок.4.Санитарно-энтомологические показатели - подсчитывают число личинок и куколок мух.5.Альгологические показатели: в чистой почве преобладают желто-зеленые водоросли, в загрязненной - сине-зеленые и красные водоросли.6.Радиологические показатели: необходимо знать уровень радиации и содержание радиоктивных элементов.7.Биогеохимические показатели (для химических веществ и микроэлементов).

Самоочищение почвы - способность почвы уменьшать концентрацию загрязняющего вещества в результате протекающих в почве процессов миграции.

Под действием ферментов гнилостных бактерий сложные органические вещества, попавшие в почву, разлагаются на простые минеральные соединения (СО2, Н2О, NH3, H2S), доступные для питания автотрофных организмов. Наряду с процессами распада органических веществ в почве происходят процессы синтеза.

2. Санитарно-эпидемиологические требования к хранению и первичной обработке пищевых продуктов, приготовлению и хранению готовой пищи.

Обработка продуктов производится в соответствующих производственных помещениях с использованием отдельных разделочных досок и ножей,маркированные для каждого продукта.

При хранении пищевых продуктов на производственных складах внимание уделяется срокам и условиям хранения, особенно температурному режиму. Выдача продуктов в столовую производится на каждый прием пищи с учетом времени, необходимого для еготехнологической обработки (мороженное мясо за 12 ч, мороженная рыба – за 4-6 ч)Мороженное мясо оттаивается в неразрубленном виде подвешенным на крючьях.(в воде запрещено) перед разрубкой туши промываются водой, срезают загрязненные участки, клейма,кровоподтеки,.

Важным является строгое соблюдение поточности обработки продуктов питании по времени. Сроки изготовления блюд с момента завершения первичной обработки сырья и полуфабрикатов до тепловой обработки и реализации готовой пищи должны быть минимальны. Фарш приготавливается не ранее чем за час до готовки. Хранение полуфабриката допускается тольк в холодильнике. Мороженную рыбу отстаивают в холодной воде 2-4 ч, афиле – на производственных столах при комнатной температуре. Оттаявшая рыба немедленно подвергается первичной, затем тепловой обработке.

Термическая обработка: мясо-варится кусками 1,5-2 кг в течение 2-2,5 ч.

Молоко,полученное в цистернах может использоваться только после кипячения.

Очищенный картофель хранится не более 4 ч

Мясные порции перед выдачей должны быть подвергнуты повторной тепловой обработке(кипячение в бульоне 15-20 мин)

Приготовление сладких блюд должно быть закончено не ранее,чем за 2 ч до приема пищи.

Готовая пища выдается на столы за 10-15 мин до времени приема пищи. Температура пищи к моменту ее приема должна быть для первых блюд – не ниже 75 град,для вторых – не ниже 65, чая -80, холодных закусок –не выше 14.

Срок хранения пищи в холодильнике не должен привышать 4 ч.

Перед выдачей пища подвергается обязательной повторной тепловой обработке. Первые блюда кипятятся, мясные порции провариваются втечение 15-20 мин, рыбные порции и гарнир прожариваются. Дальнейшее их хранение после тепловой обработки не разрешается.

3. Факторы, способствующие переохлаждению организма человека. Основные направления и средства профилактики.

Пониженной считается t ниже +15°С. Температура, которая не вызывает напряжения терморегуляторного аппарата, когда сохранено равновесия между теплопродукцией и теплоотдачей, считается оптимальной (тепловой комфорт).

При падении t воздуха ниже оптимальных величин (особенно в сочетании с ветром и высокой влажностью воздуха) возрастают теплопотери организма. До некоторого времени (в зависимости от тренировки организма) это компенсируется за счет механизмов термоорегуляции.

При значительном усилении охлаждающей способности среды тепловой баланс нарушается: теплопотери превышают теплопродукцию, при этом наступает переохлаждение организма.

В первую очередь охлаждаются поверхностные ткани (кожа, жировая клетчатка, мышцы), при сохранении нормальной t паренхиматозных органов. Это не опасно и способствует уменьшению теплопотерь.

При дальнейшем охлаждении снижается t всего тела, что сопровождается рядом негативных явлений (снижается сопротивляемость организма к инфекциям).

При локальном охлаждении отдельных участков тела могут развиться заболевания опорно-двигательного аппарата (миозиты, артриты) и периферической нервной системы (невриты, радикулит).

Профилактика: 1 – Закаливание – тренировка организма, повышающая сопротивляемость его к охлаждению. 2 – Подбор соответствующей одежды. 3 – Создание благоприятного микроклимата в помещениях (отопление). 4 – Более калорийное питание.


1. Факторы риска для здоровья школьников в общеобразовательных учреждениях.

Содержание и организация обучения всегда должна соответствовать возрастным особенностям учащихся. Подбор объёма учебной нагрузки и уровня сложности изучаемого материала в соответствии с индивидуальными возможностями ученика- одно из главных и обязательных требований к любой образовательной технологии, определяющей характер ее влияния на здоровье учащегося. Однако сделать это в массовой современной школе очень трудно.

Существенное увеличение учебной нагрузки в школе: у детей отмечается большая распространенность нервно- психических нарушений, утомляемость, сопровождаемая иммунным и гормональными дисфункциями. Переутомление создает предпосылки развития острых и хронических нарушений здоровья, развития нервных, психсоматических и других заболеваний. Отмечается тенденция к росту числа заболеваний нервной системы и органов чувств у детей.

Вынужденное положение тела во время работы, «монотония».

Раннее начало уроков в 1 смене, и поздний конец уроков во 2 смене.

2. Отработавшие газа двигателей внутреннего сгорания. Их состав, действие на организм человека и профилактика отравлений.

ОГ - смесь газов с примесью взвешенных частиц, образовавшихся в результате сгорания моторного топлива.

Компоненты, содержащиеся в выхлопных газах можно разделить на вредные и безвредные.

Безвредные:

Кислород O2

Диоксид углерода CO2 см. позже парниковый эффект

Водяной пар H2O

Вредные вещества:

Монооксид углерода СО (угарный газ)

Углеводородные соединения HC (несгоревшее топливо и масло)

Осиды азота NO и NO2 которые обозначаются NOx поскольку O постоянно меняется

Оксид серы SO2

Твердые частицы (копоть)

Количество и состав отработавших газов определяются конструктивными особенностями двигателей, их режимом работы, техническим состоянием, качеством дорожных покрытий, метеоусловиями

Токсическое действие СО заключается в его способности превращать часть гемоглобина крови в карбо-ксигемоглобин, вызывающий нарушение тканевого дыхания. Наряду с этим СО оказывает прямое влияние на тканевые биохимические процессы, влекущие за собой нарушение жирового и углеводного обмена, витаминного баланса и т. д. Токсический эффект СО связан также с его непосредственным влиянием на клетки центральной нервной системы. При действии на человека СО вызывает головную боль, головокружение, быструю утомляемость, раздражительность, сонливость, бо-ли в области сердца. Острые отравления наблюдаются при вдыхании воздуха с концентрацией СО более 2.5 мг/л в течение 1 часа.

Оксиды азота раздражающе действуют на слизистые оболочки глаз, носа, рта. Воздействие NO2 способствует развитию заболеваний легких. Симптомы отравления проявляются только через 6 часов в виде кашля, удушья, возможен нарастающий отек легких. Также NОХ участвуют в формировании кислотных дождей.

Отдельные углеводороды СН (бензапирен) являются сильнейшими канцерогенными веществами, переносчиками которых могут быть частички сажи.

При работе двигателя на этилированных бензинах образуются частицы твердого оксида свинца. Присутствие свинца в воздухе вызывает серьезные поражения органов пищеварения, центральной и периферической нервной системы. Воздействие свинца на кровь проявляется в снижении количества гемоглобина и разрушении эритроцитов.

Профилактика:

Альтернативные топлива.

Законодательные ограничения выбросов вредных веществ

Система нейтрализации ОГ (темрический, каталитический)

3. Организация питания военнослужащих в стационарных условиях. Виды питания. Основные направления и содержание медицинского контроля.

Правильная организация войскового питания достигается выполнением следующих требований:

· постоянным контролем за полнотой доведения положенных норм продовольственных пайков до питающихся;

· правильным планированием питания личного состава, рациональным использованием норм продовольственных пайков, обязательным выполнением кулинарных правил обработки продуктов и приготовления пищи, разработкой и соблюдением наиболее целесообразного режима питания для различных контингентов военнослужащих с учетом характера и особенностей их служебной деятельности;

· приготовлением вкусной, полноценной, доброкачественной и разнообразной пищи по установленным нормам продовольственных пайков;

· устройством и оборудованием столовых воинских частей с учетом внедрения прогрессивных технологий и созданием максимальных удобств в работе;

· умелой эксплуатацией технологического, холодильного и немеханического оборудования, столовой и кухонной посуды, своевременным их техническим обслуживанием и ремонтом;

· соблюдением санитарно-гигиенических требований при обработке продуктов, приготовлении, раздаче и хранении пищи, мытье посуды, содержании помещений столовой, а также правил личной гигиены поварами и другими работниками столовой;

· четкой организацией работы поварского состава и суточного наряда по столовой воинской части;

· соблюдением военнослужащими определяемых Уставами норм поведения в столовой во время приема пищи;

· проведением мероприятий, направленных на совершенствование и улучшение организации войскового питания: конференций по питанию, смотров-конкурсов на лучшую столовую, выставок блюд и т.д.;

·регулярным проведением контрольно-показательных, варок пищи, занятий с младшими специалистами продовольственной службы и повышением их квалификации.

Режим питания военнослужащих определяет количество приемов пищи в течение суток, соблюдение физиологически обоснованных промежутков времени между ними, целесообразное распределение продуктов по приемам пищи, положенных по нормам продовольственных пайков в течение дня, а также прием пищи в строго установленное распорядком дня время.

Разработка режима питания военнослужащих возлагается на командира воинской части, его заместителя по тылу, начальников продовольственной и медицинской служб воинской части.

В зависимости от характера учебно-боевой деятельности и норм продовольственных пайков для личного состава ВС РФ устанавливается трех- или четырехразовое питание.

Трехразовое питание (завтрак, обед и ужин) организуется в воинской части, где личный состав питается по общевойсковому пайку и не менее 4-х раз - по пайку для суворовцев, нахимовцев и воспитанников военно-музыкальных училищ.

Промежутки между приемами пищи не должны превышать 7 часов. С учетом этого при установлении распорядка дня воинской части завтрак планируется до начала занятий, обед - после окончания основных занятий, ужин - за 2-3 часа до отбоя. После обеда в течении 30 мин. (не менее) не разрешается проводить занятия или работы.

пожар вред окружающий среда человек

Любой пожар представляет собой опасное социальное явление, причиняющий материальный ущерб, вред жизни и здоровью людей.

В условиях развития пожара человек может подвергнуться смертельной опасности по причинам:

  • 1) теплового воздействия на организм;
  • 2) образования монооксида углерода и других токсичных газов;
  • 3) недостатка кислорода.

Задание 1. Теоретический вопрос

Текст должен быть написан лаконичным, технически грамотным языком, на весь использованный материал должны быть даны ссылки по тексту. В конце задания должен быть приведен список использованной литературы. Общий объем ответа на теоретическое задание должен составлять не менее 5 печатных страниц.

Таблица 1.

Тепловое воздействие на организм человека

Важно учитывать, что непосредственное термическое воздействие на живой организм при пожаре возможно только в том случае, когда человек, будучи в полном сознании, не имеет возможности защитить себя или не в состоянии принять какие-либо контрмеры, поскольку находится без сознания. Восприятие боли как предупредительного импульса термического поражения поверхности тела (например, образование пузырей) зависит от интенсивности теплового потока и времени его воздействия. Быстро горящие материалы с высокой теплотой сгорания (например, хлопок, ацетаты целлюлозы, полиакрилнитриловое волокно и т. п.) оставляют мало времени между ощущением боли (предупредительный сигнал) и повреждением поверхности тела.

Повреждения, причиняемые тепловым излучением, характеризуются следующими данными:

Нагрев до 60 °С. Эритема (покраснение кожи).

Нагрев до 70 °С. Везикация (образование пузырей).

Нагрев до 100 °С. Деструкция кожи с частичным сохранением капилляров.

Нагрев свыше 100 °С. Ожог мышц.

Обнаружение таких косвенных термических воздействий означает, что организм находился на определенном расстоянии от места активного горения и подвергался воздействию вторичных его проявлений - нагреву от поглощения лучистой энергии и передачи теплоты нагретым воздухом.

Для большинства людей смерть от СО достигается при 60% концентрации карбоксигемоглобина в крови. При 0,2% СО в воздухе требуется 12-35 минут в обстановке пожара для образования 50% карбоксигемоглобина. В этих условиях человек начинает задыхаться и не в состоянии координировать свои движения и теряет сознание. При 1% СО требуется всего 2,5-7 минут, чтобы достигнуть той же концентрации карбоксигемоглобина, а при экспозиции в 5% концентрации СО требуется всего 0,5-1,5 мин. На детей монооксид углерода воздействует сильнее, нежели на взрослых. Двойной глубокий вдох 2% СО в газообразной смеси приводит к потере сознания и смерти в течение двух минут.

Количество абсорбированного в крови монооксида углерода обусловливается помимо концентрации СО следующими факторами:

  • 1) скоростью вдыхания газа (с ростом скорости увеличивается количество поглощаемого СО);
  • 2) характером деятельности или ее недостатком, что обусловливает потребность в кислороде и тем самым поглощение монооксида углерода;
  • 3) индивидуальной чувствительностью к действию газа.

Если анализ крови жертвы показывает минимальное содержание СО, приведшее к смерти, то это может свидетельствовать о длительным воздействии относительно низких концентраций газа в условиях небольшого тлеющего процесса горения. С другой стороны, если в крови обнаруживается очень высокая концентрация СО, то это указывает на более короткую экспозицию при значительно более высокой концентрации газа, выделяемого в условиях сильного пожара.

Неполное горение способствует образованию, наряду с монооксидом углерода, различных токсических и раздражающих газов. Доминирующим по опасности токсическим газом являются пары синильной кислоты, образующейся при разложении многих полимеров. Примером их являются полиуретаны, присутствующие во многих покрытиях, красках, лаках; полужесткий пенополиуретан, применимый во всяких драпировках мебели; жесткий пенополиуретан, употребляемый в качестве изоляции потолков и стен. Другие материалы, содержащие азот в их молекулярной структуре, также образуют при разложении и горении цианистый водород и диоксид азота. Эти продукты образуются из волос, шерсти, нейлона, шелка, мочевины, акрилнитрильных полимеров.

Для определения причины смерти в случае, если содержание СО в крови оказалось на низком уровне и отсутствуют другие ее причины, необходимо проанализировать кровь на присутствие цианистого водорода (НС). Его наличие в воздухе в количестве 0,01% вызывает смерть в течение нескольких десятков минут. Цианистый водород может удерживаться длительное время в обводненном остатке. Исследователь пожара, стремящийся определить по запаху наличие легко воспламеняемых жидкостей, может не почувствовать летальные концентрации НСL, которые снижают чувствительность носа к запахам.

Другие токсичные газы, как окись и закись азота, также образуются при горении азотсодержащих полимеров. Хлорсодержащие полимеры, преимущественно поливинилхлорид (РУС, ПВХ), образуют хлористый водород - очень токсичный газ, который в контакте с водой, так же как хлор, в виде соляной кислоты вызывает сильную коррозию металлических элементов.

Полимеры содержащие серу, сульфоновые полиэфиры и вулканизированный каучук - образуют диоксид серы, сероводород и карбонилсульфида. Карбонилсульфид значительно токсичнее монооксида углерода. Полистиролы, часто используемые в качестве упаковочных материалов, в световой рассеивающей арматуре и др образуют при разложении и горении мономер стирола, также являющегося токсичным продуктом.

Все полимеры и нефтепродукты при развившемся горении могут образовать альдегиды (формальдегид, акролеин), оказывающие сильное раздражающее воздействие на дыхательную систему живого организма.

Снижение концентрации кислорода в атмосфере ниже 15% (об.) затрудняет вплоть до полного прекращения газообмен в легочных альвеолах. При уменьшении содержания кислорода от 21% до 15% ослабляется мускульная деятельность (кислородное голодание). При концентрациях от 14% до 10% кислорода сохраняется еще сознание, но падает способность к ориентировке в обстановке, теряется рассудительность. Дальнейшее уменьшение концентрации от 10% до 6% кислорода приводит к коллапсу (полный упадок сил), но с помощью свежего воздуха или кислород состояние может быть предотвращено.

ВОЗДЕЙСТВИЕ ТЕМПЕРАТУРЫ


Влияние низких и высоких температур на свойства материалов в большинстве случаев носит диаметрально противоположный характер. Кроме того, быстрое изменение этих температур (в течение суток или нескольких часов) увеличивает эффект вредного их воздействия на машины.

Таблица 3.3.1
Основные характеристики климатических районов

Тепловые воздействия возникают как снаружи системы - солнечная радиация, тепло от близко расположенных источников, так и внутри системы - выделение тепла электронными схемами, при трении механических узлов, химической реакции и др. Особенно вреден нагрев узлов при повышенной влажности окружающей среды, а также при циклическом изменении этих факторов.

Различают три вида тепловых воздействий:

Непрерывное.
Рассматривают при анализе надежности систем, работающих в стационарных условиях.

Периодическое.
Рассматривают при анализе надежности систем при повторно-кратковременном включении аппаратуры и изделий под нагрузку и при резких колебаниях условий эксплуатации, а также при суточном изменении внешней температуры.

Апериодическое. Оценивают при работе изделий в условиях теплового удара, следствием чего являются внезапные отказы.

Повреждение изделий, вызванное стационарным тепловым воздействием, обусловлено, в основном, превышением при эксплуатации предельно допустимого значения температуры.

Деформации изделий, возникающие при периодических тепловых воздействиях, приводят к возникновению повреждений. На некоторые изделия одновременно с периодическим нагревом и охлаждением действуют и резкие изменения давления, что и приводит к повреждениям.

Высокая скорость изменения температуры (тепловой удар), имеющие место при апериодических воздействиях тепла, приводит к быстрому изменению размеров материалов, что является причиной повреждений. Этот факт чаще проявляется при недостаточном учете коэффициентов линейного расширения сопрягаемых материалов. В частности, при повышенных температурах заливочные материалы размягчаются, происходит расширение сопрягаемых с ними материалов, а при переходе к отрицательным температурам происходит сжатие заливочных материалов и растрескивание их в местах соприкосновения с металлами. При отрицательных температурах возможна значительная усадка заливочных материалов, следовательно, у электроизделий повышается возможность электрического перекрытия. Низкие температуры непосредственно ухудшают основные физико-механические свойства конструкционных материалов, повышают возможность хрупкого разрушения металлов. Низкие температуры существенно влияют на свойства полимерных материалов, вызывая процесс их стеклования, высокие же температуры изменяют упругость этих материалов. Нагрев полимерных изоляционных материалов резко снижает их электрическую прочность и сроки службы.

При оценке показателей надежности технических изделий, входящих в системы, необходимы данные об изменениях температуры окружающего воздуха во времени.

Характер изменения температуры во времени описывается случайным процессом:
где - средняя температура, соответствующая времени t, ° С ;
t - время от 0 ч 1 января до 24 ч 31 декабря;
y - случайная составляющая температуры, соответствующая времени t, ° С .
Среднее значение рассчитывают по формуле:
где А 0 - коэффициент численно равный математическому ожиданию средней годовой температуры, ° С ;
А i , В i - амплитуды колебаний математического ожидания температуры, соответствующие частоте w i .

При резком изменении температуры воздуха происходит неравномерное охлаждение или нагрев материала, что вызывает дополнительные напряжения в нем. Наибольшие напряжения возникают при резком охлаждении деталей. Относительное удлинение или сжатие отдельных слоев материала определяется зависимостью
,
где a t - коэффициент линейного расширения;
t 1 - температура в первом слое;
t 2 - температура во втором слое; t 2 = t 1 + (¶ t / ¶ l )D l;
D l - расстояние между слоями.

Дополнительные (температурные) напряжения в материале

,
где Е - модуль упругости материала.

Зависимость удельной электропроводности материала от его температуры определяется уравнением ,
где s эо - удельная электропроводность при t = 0 ° С,
a - температурный коэффициент.

Скорость процессов механического разрушения нагруженного твердого тела и, соответственно, время до разрушения зависят от структуры и свойств тела, от напряжения, вызываемого нагрузкой, и температуры.

Предложен ряд эмпирических формул, описывающих зависимость времени до разрыва t (или скорости разрушения u 2) от этих факторов. Наибольшее признание получила установленная экспериментально для многих материалов (чистых металлов, сплавов, полимерных материалов, полупроводников органического и неорганического стекла и др.) следующая температурно-временная зависимость прочности - между напряжением s , температурой Т и временем t от момента приложения постоянной механической нагрузки до разрушения образца:
,
где t 0 , U 0 , g - параметры уравнения, характеризующего прочностные свойства материалов.

Графики зависимости lgt от s для различных Т представляют собой семейства прямых линий, сходящихся при экстраполяции в одной точке при lgt = lgt 0 (рис. 3.3.1).

Рис. 3.3.1. Типичная зависимость долговечности материала от напряжения при различных температурах (Т 1 <Т 2 <Т 3 <Т 4)

Для скорости процесса разрушения, следовательно, можно написать:
.

Все изменения прочностных свойств материалов, проходящие при изменении их чистоты, при тепловой обработке и деформации, связаны с изменением только величины g . Значения g может быть вычислено из временной зависимости, полученной при одной температуре:
g = a R T ,
где a - тангенс угла наклона прямой lg = f(s ).

Как говорилось выше, низкие температуры изменяют физико-механические свойства конструкционных и эксплуатационных материалов. Результатами воздействия низких температур являются:
–увеличение вязкости дизельного топлива;
–снижение смазывающих свойств масел и густых смазок;
–застывание механических жидкостей, масел и смазок;
–замерзание конденсата и охлаждающих жидкостей;
–снижение ударной вязкости нехладостойких сталей;
–отвердевание и охрупчивание резин;
–уменьшение сопротивления электропроводников;
–обледенение и покрытие инеем элементов машин.

Последствиями этих факторов являются:
–ухудшение условий работы узлов трения и устройств машины;
–снижение несущей способности элементов;
–ухудшение эксплуатационных свойств материалов;
–воздействие дополнительных нагрузок;
–пробой изоляции обмоток электрических машин систем.

Перечисленные влияния низких температур на свойства материалов вызывают увеличение параметров пусковых, нагрузочных и рабочих отказов, а также снижение сроков службы элементов машин.

Источники . Современное промышленное производство связано с интенсификацией технологических процессов и внедрением агрегатов большой тепловой мощности. Рост мощностей агрегатов и расширение производства приводят к значительному увеличению избыточных тепловыделений в горячих цехах.

В производственных условиях обслуживающий персонал, находясь вблизи расплавленного или нагретого металла, пламени, горячих поверхностей и т.п., подвергается воздействию тепловых излучений этих источников. Нагретые тела (до 500 о С) являются в основном источниками инфракрасного излучения. С повышением температуры в спектре излучения появляются видимые лучи. Инфракрасное излучение (ИК-излучение) – часть электромагнитного спектра с длиной волны λ = 0,78 – 1000 мкм, энергия которого при поглощении в веществе вызывает тепловой эффект.

Действие на человека. Под действием высоких температур и теплового облучения работающих происходят резкое нарушение теплового баланса в организме, биохимические сдвиги, появляются нарушения сердечнососудистой и нервной систем, усиливается потоотделение, происходит потеря нужных организму солей, нарушение зрения.

Все эти изменения могут проявиться в виде заболеваний:

- судорожная болезнь , вызванная нарушением водно-солевого баланса, характеризуется появлением резких судорог, преимущественно в конечностях;

- перегревание (тепловая гипертермия) возникает при накоплении избыточного тепла в организме; основным признаком является резкое повышение температуры тела;

- тепловой удар возникает в особо неблагоприятных условиях:

выполнение тяжелой физической работы при высокой температуре воздуха в сочетании с высокой влажностью. Тепловые удары возникают в результате проникновения коротковолнового инфракрасного излучения (до 1,5 мкм) через покровы черепа в мягкие ткани головного мозга;

- катаракта (помутнение кристалликов) – профессиональное заболевание глаз, возникающее при длительном воздействии инфракрасных лучей с λ = 0,78-1,8 мкм. К острым нарушениям органов зрения относятся также ожог, конъюнктивиты, помутнение и ожог роговицы, ожог тканей передней камеры глаза.

Кроме того, ИК-излучение воздействует на обменные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей (развитие хронического ларингоринита, синуситов), не исключается мутагенный эффект теплового излучения.

Поток тепловой энергии, кроме непосредственного воздействия на работающих, нагревает пол, стены, перекрытия, оборудование, в результате чего температура воздуха внутри помещения повышается, что также ухудшает условия работы.


Нормирование теплового излучения и способы защиты от него

Нормирование параметров микроклимата воздуха рабочей зоны производственных помещений предприятий народного хозяйства осуществляется согласно ГОСТ ССБТ 12.1.005-88.

В целях профилактики неблагоприятного воздействия микроклимата должны быть использованы защитные мероприятия (например, системы местного кондиционирования воздуха; воздушное душирование; компенсация неблагоприятного воздействия одного параметра микроклимата изменением другого; спецодежда и другие средства индивидуальной защиты по ГОСТ ССБТ 12.4.045-87; помещения для отдыха и обогрева; регламентация времени работы: перерывы в работе, сокращение рабочего дня, увеличение продолжительности отпуска, уменьшение стажа работы и др.).

Одним из эффективных коллективных средств защиты от теплового излучения работающих является создание определенного термического сопротивления на пути теплового потока в виде экранов различных конструкций – прозрачных, полупрозрачных и непрозрачных. По принципу действия экраны подразделяются на теплопоглотительные, теплоотводящие и теплоотражательные.

Теплопоглотительные экраны – изделия с высоким теплосопротивлением, например огнеупорный кирпич.

Теплоотводящие экраны – сварные или литые колонны, в которых циркулирует в большинстве случаев вода. Такие экраны обеспечивают температуру на наружной поверхности 30 – 35о С. Более эффективно использовать теплоотводящие экраны с испарительным охлаждением, они сокращают расход воды в десятки раз.

К теплоотражающим относят экраны, изготовленные из материалов, хорошо отражающих тепловое излучение. Это листовой алюминий, белая жесть, полированный титан и т.п. Такие экраны отражают до 95 % длинноволнового излучения. Непрерывное смачивание экранов такого типа водой позволяет задерживать излучение почти полностью.

Если же необходимо обеспечить возможность наблюдения за ходом технологического процесса при наличии теплового облучения, то в этом случае широко применяют цепные завесы, представляющие собой наборы металлических цепей, подвешенных перед источником излучения (эффективность до 60-70 %), и прозрачные водяные завесы в виде сплошной тонкой водяной пленки. Слой воды толщиной 1 мм полностью поглощает часть спектра с λ = 3 мкм, а толщиной в 10 мм – с длиной волны λ = 1,5 мм.


Энергосбережение в котельных. Основные энергосберегающие мероприятия для промышленных котельных установок в целях уменьшения потерь теплоты с уходящими газами. Преимущества перевода паровых котлов в водогрейный режим. Определение КПЛ парового и водогрейного котлов.

Среди факторов, увеличивающих расход топлива в котельных, можно выделить: физический и моральный износ котельных установок; отсутствие или плохую работу системы автоматики; несовершенство газогорелочных устройств; несвоевременную наладку теплового режима котла; образование отложений на поверхностях нагрева; плохую теплоизоляцию; неоптимальную тепловую схему; отсутствие экономайзеров-подогревателей; неплотности газоходов.

В зависимости от типа котельной установки расход условного топлива на 1 Гкал отпущенной тепловой энергии составляет 0,159-0,180 т у.т., что соответствует КПД котла (брутто), равному 80-87 %. При работе котельных установок средней и малой мощности на газе КПД (брутто) может быть увеличен до 85-92 % .

Номинальный КПД (брутто) водогрейных котельных установок мощностью менее 10 Гкал/ч, используемых в том числе и в муниципальном секторе теплоэнергетики, при работе на газе составляет 89,8-94,0%, при работе на мазуте - 86,7-91,1 %.

Основные направления энергосбережения в котлах становятся очевидными при рассмотрении их тепловых балансов.

Анализ тепловых балансов существующих паровых и водогрейных кот­лов показывает, что наибольшие потери теплоты (10-25 %) происходят с уходящими дымовыми газами:

Снижению потерь с уходящими газами способствуют:

· поддержание оптимального коэффициента избытка воздуха в топке котла ат (рис. 6.10) и снижение присосов воздуха по его тракту.

· поддержание чистоты наружных и внутренних поверхностей нагрева, что позволяет увеличить коэффициент теплопередачи от дымовых газов к воде; увеличение площадей хвостовых поверхностей нагрева; поддержание в барабане парового котла номинального давления, обеспе-чивающего расчетную степень охлаждения газов в хвостовых поверхностях нагрева;

· поддержание расчетной температуры питательной воды, определяющей температуру уходящих после экономайзера дымовых газов;

· перевод котлов с твердого или жидкого топлива на природный газ и др.

Очевидно, что изменение температуры уходящих газов на 20 °С в рассматриваемых условиях приводит к изменению КПД котла на 1 % (рис. 6.11).

Особенности глубокой утилизации теплоты дымовых газов (с конденсацией содержащихся в них водяных паров) рассмотрены ниже (см. гл. 8), Ниже также представлены некоторые из энергосберегающих мероприятий, приводящих к снижению затрат энергии в источниках теплоты, связанные со схемными изменениями и режимами эксплуатации.

В ряде случаев является целесообразным перевод паровых котлов в водогрейный режим, что позволяет существенно повысить фактические КПД паровых котлов типов ДКВр, ДЕ и др. .

Работа паровых котлов на низких (около 0,1-0,3 МПа) давлениях отрицательно сказывается на устойчивости циркуляции, из-за снижения температуры насыщения и увеличения доли парообразования в экранных трубах наблюдается интенсивное образование накипи и увеличивается вероятность пережога труб. Кроме того, если в котельной установке используется чугунный водяной экономайзер , то при работе котла на давлении 0,1 - 0,3 МПа из-за низкой температуры насыщения его необходимо отключать, так как в нем может наблюдаться недопустимое парообразование. Эти и другие особенности приводят к тому, что КПД этих паровых котлов не превышает 82 %, а в некоторых случаях, когда трубы сильно загрязнены, КПД котла уменьшается до 70-75 %.

Переведенные на водогрейный режим паровые котлы в эксплуатации не уступают специализированным водогрейным котлам, а по ряду показателей и возможностям превосходят их, например в отношении:

· доступности для внутреннего осмотра, контроля, ремонта, улавливания шлама и очистки, благодаря наличию барабанов;

· возможности более гибкого регулирования теплопроизводительности в допустимых пределах (качественного по температуре сетевой воды и количественного по ее расходу);

· повышения КПД при переводе на водогрейный режим на 1,5 -12,0 %.

Перевод на водогрейный режим требует внесения изменений в конструкцию котла.

Перевод котлов с твердого или жидкого топлива на природный газ приводит к снижению избытка воздуха в топке и уменьшению наружного загрязнения теплопередающих поверхностей. Снижаются затраты энергии на подготовку топлива. При переводе на газ котлов, работающих на мазуте, отпадает необходимость в затратах теплоты на распыление последнего с помощью паровых форсунок. При замене твердого топлива на газ удается избежать потерь с механическим недожогом и с теплотой шлаков.

Данное мероприятие применяется, если это целесообразно по экономическим и экологическим показателям.

При эксплуатации энергосбережению способствует рациональное распределение нагрузки между несколькими одновременно работающими котлами.

В состав котельной установки, как правило, входят несколько котлов, которые могут различаться по своим характеристикам, сроку службы и физическому состоянию.

С падением нагрузки ниже номинальной уменьшается температура уходящих газов, а значит, снижаются потери теплоты с уходящими газами. При малых нагрузках уменьшаются скорости истечения газа и воздуха, ухудшается их смешение и могут возникнуть потери с химической неполнотой сгорания. Абсолютные потери теплоты через обмуровку остаются практически неизменными, а относительные (отнесенные на единицу расхода топлива), естественно, возрастают. Это приводит к тому, что существуют режимы, которым соответствует максимальное значение КПД.

Поскольку зависимости КПД котлов, расходов условного топлива от производительности индивидуальны для различных типов, конструкций котлов, сроков их эксплуатации, то рациональным распределением нагрузки между двумя и более котлами можно влиять на суммарные энергозатраты котельной .

Для водогрейной котельной в качестве нагрузки принимают часовую теплопроизводительность Q, а для паровой - часовую выработку пара D.