Главная · Личностный рост · Что такое b лимфоидные клетки. Другой лимфоцит. Новообразования из периферических Т-клеток

Что такое b лимфоидные клетки. Другой лимфоцит. Новообразования из периферических Т-клеток

Лимфобласт (4 класс) – первая морфологически распознаваемая клетка лимфатического ряда. Его ядро округлой или слегка овальной формы с нежно-сетчатой структурой хроматина, содержит 1-3 ядрышка, располагается в центре клетки, иногда эксцентрично. Цитоплазма бледно-синего цвета, вокруг ядра более светлая.

5 класс - пролимфоцит - несколько меньше по величине. Ядро имеет рыхлую, грубую структуру, цитоплазма нежно-базофильная, иногда с азурофильной зернистостью (у Т-пролимфоцитов).

6 класс - лимфоцит - ядро округлой формы, иногда почковидное или бобовидное с глыбчатой, компактной структурой хроматина, местами с просветлениями. Цитоплазма узкая, иногда едва заметная, базофильная. Реже встречаются широкоцитоплазменные лимфоциты с менее базофильной цитоплазмой и азурофильной зернистостью.

К клеткам лимфоидного ряда относятсяплазматические клетки, происходящие из В-лимфоцитов через молодую предстадию - плазмобласт .

Плазмобласт – крупная клетка с эксцентрично расположенным ядром округлой или овальной формы. Структура ядра нежная, с мелкими зернами хроматина и 3-4 ядрышками. Цитоплазма интенсивно базофильная, не гомогенная, иногда несколько вытянута в одном направлении, с перинуклеарной зоной просветления.

Проплазмацит характеризуется эксцентрично расположенным ядром, с рыхлой структурой хроматина, который может приобретать характерное колесовидное расположение, могут наблюдаться нуклеолы. Цитоплазма не всегда имеет черты клеток этого ряда. Перинуклеарная зона просветления может отсутствовать. Окраска цитоплазмы может быть не интенсивно синей, а с сероватым оттенком.

Плазмоцит – зрелая плазматическая клетка удлиненной формы со специфическими чертами. Ядро пикнотическое, колесовидной структуры, как правило, расположено эксцентрично, ядрышки отсутствуют. Цитоплазма интенсивно базофильная с просветлением вокруг ядра, часто ячеистая (вакуолизированная).

Функции клеток лимфоидного ряда.

Лимфоциты представляют собой уникальную по разнообразию популяцию клеток, происходящих из различных поэтинчувствительных предшественников и объединенных единой морфологией. Подразделение лимфоцитов связано с их происхождением, функциональными особенностями и иммуноморфологической характеристикой.

Варианты классификации лимфоцитов:

А. По происхождению:

    Т-лимфоциты (тимусзависимые) - предшественником является КОЕ КМ, ее дифференцировка происходит под влиянием тимозина (гормона тимуса),

    В-лимфоциты - происходят из КОЕ КМ, но развиваются под влиянием активаторов, не связанных с тимусом,

    В периферической крови выделяется третья сборная группа, не имеющая основных признаков (маркеров) Т- и В-лимфоцитов и обозначаемая как "ни Т- ни В-" или "0-субпопуляция". Эти клетки морфологически сходны с лимфоцитами, но различаются по происхождению и функциональным особенностям.

Б. По функциональным особенностям, связанным с их участием в иммунологической реакции:

    лимфоциты, узнающие чужеродный АГ и дающие сигнал к началу иммунного ответа (антиген-реактивные клетки, клетки иммунной памяти),

    лимфоциты, осуществляющие непосредственный ответ - эффекторы (цитотоксические клети - киллеры, эффекторы ГЗТ, антителопродуценты),

    лимфоциты, помогающие образованию эффекторов - хелперы (помощники),

    лимфоциты, тормозящие начало и осуществляющие окончание иммунной реакции (супрессоры).

В. Иммуноморфологическая классификация - разграничение их по функциональной принадлежности и происхождению с помощью определения на мембране набора рецепторов и антигенов, различного у каждой субпопуляции. С помощью мембранных структур клетка "узнает" АГ и взаимодействует с другими иммунокомпетентными клетками. Комплекс антигенных и рецепторных структур мембраны лимфоцита является иммуноморфологической характеристикой клетки. В него входят иммуноглобулины, АГ гистосовместимости, рецепторы для компонентов комплемента, гетерогенных эритроцитов, митогенов и т.д.

Среди мембранных структур лимфоцита наиболее изученными являются АТ - Ig. По наличию поверхностных Ig (SmIg) различают SmIg + -лимфоциты и SmIg - -лимфоциты.

Наиболее постоянно присутствуют на лимфоцитах антигены тканевой совместимости (Human Leukocytic Antigens - HLA). Кроме лимфоцитов HLA-АГ встречаются на многих других ядросодержащих клетках организма, но особое значение они имеют для иммунокомпетентных клеток.

Т-лимфоциты.

Т-лимфоциты представляют собой сложную систему различных в функциональном отношении клеток, объединяемых происхождением и присутствием на поверхности общего АГ - тимусного человеческого лимфоцитарного АГ.

Среди зрелых Т-лимфоцитов, образующихся после контакта с АГ, различают:

    антигенреактивные клетки,

    Т-хелперы,

    Т-киллеры,

    эффекторы ГЗТ,

    Т-супрессоры,

    клетки иммунологической памяти,

    особый тип Т-клеток, объектом действия которых является СКК КМ и первые этапы ее дифференцировки.

Антигенреактивные Т-лимфоциты первыми реагируют на присутствие АГ, запускают в реакцию хелперы и супрессоры и способствуют их пролиферации, но сами эффекторами не являются. Эти клетки представляют собой основную массу Т-лимфоцитов периферической крови и лимфы. Им свойственна высокая способность к миграции. После встречи с АГ эта клетка превращается в иммунобласт, который, выделяя медиаторы, способствует запуску иммунной реакции в ближайшем л/узле.

При отсутствии или резком снижении количества антигенреактивных клеток нарушается процесс распознавания, что проявляется снижением иммунного ответа на бактериальные, вирусные и грибковые АГ, появляются аутоиммунные расстройства. Это может быть следствием отсутствия тимуса, хронической потери лимфы из грудного протока, глубокой кахексии и др.

Клетки иммунологической памяти , относящиеся также к антигенреактивным клеткам, узнают АГ в фазу вторичного иммунного ответа, при повторном контакте с АГ, реагируя на АГ раньше и значительнее интенсивнее, чем при первом контакте.

Т-хелперы неоднородны по дифференцировке:

а) более зрелые - хелперы Т-В, функция которых заключается в воздействии на определенный клон В-лимфоцитов,

б) хелперы Т-Т более ранние по дифференцировке, способствуют пролиферации Т-киллеров и эффекторов ГЗТ.

Т-хелперы расположены преимущественно в селезенке и л/узлах. Их действие на другие клетки осуществляется как при непосредственном контакте, так и при помощи гуморальных медиаторов с обязательным участием макрофагов. Основная задача Т-хелперов - представить В-лимфоцитам АГ в специальной связанной форме. Рецепторы хелперов Т-В соединяются с АГ, образуя комплекс, названный иммуноглобулином Т (IgT).

Хелперы Т-Т вырабатывают хелперный фактор клеточного иммунитета. Его функция заключается в усилении цитотоксического действия и дифференцировки киллеров, увеличении противоопухолевой активности макрофагов.

Т-хелперы играют исключительно важную роль, определяя направление и силу иммунного ответа. Снижение их количества и угнетение функции наблюдается при старении и опухолях. Увеличение хелперов характерно для аутоиммунных заболеваний, СКВ, рассеянном склерозе, отторжении трансплантата.

Т-эффекторы ГЗТ - эта субпопуляция лимфоцитов предназначена в основном для секреции лимфокинов.

К лимфокинам относятся:

    фактор стимуляции бласттрансформации - усиливает сенсибилизацию к АГ, действует на незрелые клетки тимуса,

    фактор торможения бласттрансформации и синтеза ДНК - по действию близок к лимфотоксину,

    фактор переноса - усиливает сенсибилизацию ко всем видам АГ-нов, препятствует развитию толерантности,

    факторы, усиливающие цитотоксичность, бактериостатическую активность, бактерицидность, а также агрегацию макрофагов,

    фактор торможения миграции макрофагов - способствует концентрации фагоцитирующих клеток в районе внедрения АГ и усиливает их бактерицидность,

    фактор, тормозящий адгезию макрофагов, фактор пролиферации макрофагов, фактор усиления миграции макрофагов,

    фактор торможения миграции лейкоцитов,

    хемотаксические факторы - осуществляют хемотаксис макрофагов, нейтрофилов, базофилов, эозинофилов, фибробластов,

    колониестимулирующие факторы - влияют на рост гранулоцитарного и эритроцитарного ростков,

    фибробластактивирующий фактор - вызывает разрастание соединительной ткани вокруг зоны иммунной реакции.

Основная задача лимфокинов - обеспечить взаимодействия различных типов клеток и вовлечение их в иммунную реакцию. Большинство эффекторов ГЗТ находится в селезенке.

Т-супрессоры - регуляторы направления и объема иммунной реакции, главным образом за счет ограничения пролиферации клонов лимфатических клеток, угнетения АТ-образования, дифференцировки киллеров, аллергический процесс и развитие ГЗТ.

Под влияние супрессоров развивается состояние иммунологической толерантности (иммуноа реактивности) к АГ.

Т-супрессоры делятся на Т-Т-супрессоры (более ранние) и Т-В-супрессоры (более зрелые). Супрессоры Т-В пролиферируют, образуя клон клеток, вырабатывающие супрессорные факторы, с помощью которых подавляются В-лимфоциты.

Количество Т-супрессоров увеличивается с возрастом (особенно у женщин), при инфекционном мононуклеозе, остром гепатите, приживлении трансплантата, при ряде врожденных иммунодефицитов, при опухолях.

Т-киллеры (цитотоксические Т-лимфоциты) являются основными эффекторными клетками, оказывающими цитотоксическое действие на клетки-мишени. Образуются из Т 2 лимфоцитов после стимуляции клеточными АГ-ми. Основными АГ, на которые реагируют хелперы, являются АГ HLA системы (гистосовместимости) чужеродных или измененных клеток своего организма. Т-киллеры уничтожают клетки трансплантата и мутантные клетки организма, в том числе опухолевые. Кратковременного контакта чужеродной клетки с Т-киллерами достаточно, чтобы вызвать необратимые изменения в клетке-мишени за счет осмотических нарушений в них. Больше всего Т-киллеров в л/узлах.

Т-дифференцирующиеся - лимфоциты, непосредственно влияющие на стволовые и колониеобразующие гемопоэтические клетки.

В-лимфоциты - система клеток, объединяемая происхождением из костномозгового предшественника В-лимфоцитов. В функциональном отношении В-клетки, как и Т-лимфоциты, очень разнообразны. Среди В-клеток различают антителопродуценты, киллеры, супрессоры, клетки иммунологической памяти. Все В-лимфоциты несут В-АГ, который исчезает при дифференцировке В-лимфоцита до плазмоцита.

Различают несколько этапов дифференцировки от стволовой клетки и общего предшественника лимфоцитов до зрелых. Первые этапы дифференцировки происходят в структурах КМ и являются антигеннезависимыми. Самой первой стадией считают пре-пре-В-лимфоцит , не имеющий цитоплазматических и поверхностных иммуноглобулиновых молекул, но обладающий В-АГ и общим АГ, свойственным острому лимфобластному лейкозу. Пре-В-лимфоцит , отличатся от предыдущего тем, что в цитоплазме определяются тяжелые μ-цепи. На стадии ранних В-лимфоцитов появляются молекулы иммуноглобулина на мембране клетки, принадлежащие к классу М. Следующие стадии дифференцировки В-лимфоцит проходит вне КМ (промежуточный и зрелый В-лимфоцит). Конечным этапом дифференцировки является плазматическая клетка, которая лишена всех В-АГ и поверхностных Ig и содержит в больших концентрациях цитоплазматический Ig.

Среди В-лимфоцитов наиболее многочисленны В-лимфоциты-антителопродуценты . Основная их функция синтез и секреция Ig (АТ) в ответ на АГ.

К иммуноглобулинам относятся белки животного происхождения, которые обладают активностью АТ, а также белки, сходные с ними по химической структуре. В эту группу включены также белки, не имеющие активности АТ - миеломные белки, белки Бенс-Джонса и др.

Молекула иммуноглобулина является тетрамером, состоящим из 4-х полипептидных цепей двух типов: тяжелых (Н) и легких (L), соединенных между собой дисульфидными связями. Структурно-антигенные различия Н-цепей позволили разделить все известные Ig на 5 классов: IgG, IgA, IgM, IgD, IgE соответственно известным классам тяжелых Н-цепей (γ, α, μ, δ, ε).

    IgM - синтез их начинается уже в первые 2-3 дня после рождения под влиянием естественной антигенной стимуляции. Он отвечает за первичный иммунный ответ. Располагается в основном в кровеносном русле, в небольшом количестве в секретах. К IgM-антителам принадлежат изогемагглютинины, холодовые агглютинины, РФ, высокоавидные бактерицидные антитела. IgM не проходит через плаценту, поэтому групповые и резус-изогемагглютинины не попадают от матери ребенку.

    IgG - отвечают за вторичный иммунный ответ. Синтез их начинается на 1-4-ом месяце рождения и к 3-м годам достигает уровня синтеза взрослого. В-лимфоциты и плазмоциты, синтезирующие IgG, находятся в селезенке и л/узлах. В больших количествах находятся в сыворотке, легких, ЖКТ, печени. Молекулы IgG легко проходят через плаценту, создавая иммунитет у плода.

    IgA - в значительном количестве находится в секретах и на поверхности барьеров. Выполняет функцию местной защиты всех слизистых оболочек. В-лимфоциты и плазмоциты, синтезирующие IgА, расположены в лимфатической ткани под слизистыми оболочками. В тканях его больше, чем в крови более чем в 6 раз.

Антитела, синтезируемые антителопродуцирующими В-лимфоцитами и плазматическими клетками, составляют первую гуморальную систему иммунной защиты организма.

Кроме специфической гуморальной защиты Ig-ны участвуют в клеточных реакциях, прикрепляясь к рецепторам лимфоцитов, макрофагов, тучных клеток, базофилов и др.

В-лимфоциты также участвуют в выработке медиаторов (вторая гуморальная система иммунной защиты), синтезируя ряд лимфокинов: стимулятор В-клеток, митогенный фактор В-клеток, супрессорный фактор В-клеток КМ, супрессорный фактор более зрелых В-лимфоцитов, фактор торможения миграции макрофагов и др.

В-лимфоциты-супрессоры - это строго специфичные к антигену клетки. Эффект супрессии проявляется только к однородным по гистосовместимости клеткам и направлен против хелперов, киллеров и активированных макрофагов. В-супрессоры расположены главным образом в КМ и селезенке, при активации они пролиферируют и продуцируют антитела.

В-лимфоциты иммунологической памяти имеют на мембране комплексы АГ-АТ. Они активизируются при вторичном иммунном ответе и пролиферируют с образованием плазматических клеток, синтезирующих Ig того же класса, что и клетка иммунологической памяти.

Цитотоксические В-лимфоциты (киллеры) отличаются от других В-лимфоцитов отсутствием поверхностных Ig. Цитотоксическая функция В-киллеров - антителозависимая и связана с прикреплением к В-лимфоцитам цитотоксических антител.

В-киллеры находятся в конкурентных отношениях с блокирующими АТ-ами, т.е. не дающими достаточного цитотоксического эффекта. Соединяясь с АГ клетки-мишени, блокирующие АТ делают ее недоступной для действия киллеров всех видов. В-киллеры, присоединяя к своей поверхности большое количество цитотоксических АТ, способны повреждать клетку-мишень. Направленность специфического иммунитета в каждом конкретном случае зависит от соотношения между содержанием В-киллеров и блокирующих АТ.

Ни Т ни В-лимфоидные клетки. Лимфоидные клетки, не имеющие Т- и В-маркеров, представляют собой отдельную субпопуляцию. Несмотря на немногочисленное представительство этой субпопуляции в периферической крови (не более 5-10 % от общего числа лимфоцитов), все входящие в нее группы клеток имеют большое значение для гемопоэза и иммунного ответа.

2180 0

Нарушение регуляции иммунной системы может приводить к внезапному появлению новообразований, особенно лимфоидных клеток. Это происходит у пациентов с первичными иммунодефицитными заболеваниями, СПИДом и иммуносупрессией после трансплантации органов. При этих состояниях особенно часто развиваются агрессивные В-клеточные лимфомы, часто ассоциированные с вирусом Эпштейна-Барр. В этом подразделе сначала изложены общие черты лимфоидных опухолей, а затем рассказано о специфических свойствах их наиболее важных типов.

Лимфоидный лейкоз и лимфома были изначально отнесены к разным нозологиям на основании клеточной морфологии и клинических данных. Определение «лейкоз» подразумевает, что опухолевые клетки встречаются преимущественно в периферической крови и/или в костном мозге. Лимфома представляет собой твердые массы в лимфатических узлах, селезенке , тимусе или нелимфоидных органах. Иногда одни и те же типы опухолевых клеток могут встречаться во всех указанных местах (лейкоз/лимфома).

В 1996 г. Всемирная организация здравоохранения (ВОЗ) рекомендовала использовать классификацию опухолей, основанную на морфологии исходной клетки: В-клетки в противопоставление T/NK (Т-клетки/натуральные киллеры), и степени дифференцировки: незрелые (клетки-предшественники) в противоположность зрелым (периферическим) (табл. 17.4). Считается, что опухоли вырастают из трансформированных лимфоидных клеток, которые останавливаются в своем развитии. Они имеют такие же поверхностные маркеры и многие другие свойства, как и соответствующие нормальные клетки на этой стадии развития.

Опухолевые клетки, однако, могут не продолжать созревание и накапливаться в большом количестве; все они происходят от единого клона (т.е. они моноклональны). Они также будут занимать одни и те же участки и мигрировать теми же путям развития, что и их нормальные двойники, а именно костный мозг для незрелых В-клеток, тимус для незрелых Т-лимфоцитов и т.д.

Анализ ДНК, извлеченной из В- и Т-клеточных опухолей (Саузерн блот), выявляет одинаковый участок связывания и в гене иммуноглобулинов, и гене Т-клеточного рецептора соответственно. Такие данные свидетельствуют, что все опухолевые клетки имеют одинаковую реаранжировку этих генов, что и позволяет судить о моноклональности такого лимфоидного роста. Для определения малой популяции моноклональных клеток перед проведением анализа по методу Саузерн блот может быть использована ПЦР.

Для некоторых лимфоидных новообразований были определены уникальные молекулярные аномалии, которые могут способствовать трансформации этих клеток. Эти молекулярные изменения также внесены в схему классификации. Поскольку классификация ВОЗ основывается в большей степени на природе клеток, чем на клинических проявлениях, лейкозы и лимфомы не различают, если они представлены одинаковыми типами опухолевых клеток. Классификация ВОЗ имеет большое практическое значение, поскольку терапия лейкозов и лимфом часто одна и та же.
В-клеточные новообразования

Лимфобластный лейкоз/лимфома из В-клеток-предшественников

В-клеточный острый лимфобластный лейкоз/лимфома (В-ОЛЛ) затрагивает про- и пре-В-клетки или все незрелые стадии развития В-клеток, что демонстрируется экспрессией поверхностных CD-маркеров и стадией реаранжировки гена lg в каждом индивидуальном случае лейкоза (рис. 17.9). Опухолевые клетки могут экспрессировать маркеры бластов или маркер стволовых клеток CD34 (особенно про-В-клетки), а также «ранние» маркеры В-лимфоцитов: CD10 и CD19. Так же как и нормальные про-В- или пре-пре-В- и пре-В-клетки, соответствующие клетки ОЛЛ экспрессируют терминальную дезоксинуклеотидилтрансферазу (TdT) в ядрах.

Рис. 17.9. Соотношение стадий развития В-клеток с В-клеточными злокачественными опухолями

Экспрессия этого фермента, в норме необходимого для реаранжировки генов lg, отражает тот факт, что эти клетки В-ОЛЛ находятся в процессе генной реаранжировки. Это значит, что они еще не экспрессируют полную молекулу lg на своей поверхности и имеют только цитоплазматические μ-цепи, что соответствует стадии пре-В-клеток. При лечении детей с этим типом лейкоза наиболее эффективна химиотерапия.

Существует также вариант агрессивного незрелого В-ОЛЛ, который является лейкозным двойником лимфомы Беркитта, при котором имеются сходные характеристики транслокации генов. Эти клетки похожи на незрелые В-клетки, только что вышедшие на периферию из костного мозга. Они экспрессируют CD20, обладают «выключенной» TdT, их ген lg полностью реаранжирован, а на клеточной поверхности находятся IgM.

Лимфома/лейкоз Беркитта

Лимфома Беркитта может проявляться и как лейкоз, и как лимфома. Она характеризуется транслокацией онкогена с-тус в локус гена Н-цепи lg или одного из двух генов L-цепей - t(8; 14), t(8; 22) или t(2; 8) (рис. 17.10). Белок с-тус в норме вовлекается в активацию генов для клеточной пролиферации, когда покоящаяся клетка получает сигнал к делению. Транслокация в гены lg приводит к увеличению экспрессии с-тус и активации клеточной пролиферации. Возможно, антигенная стимуляция В-клеток инициирует повышение экспрессии с-тус под контролем гена lg.


Рис. 17.10. Некоторые В-клеточные новообразования, связанные с транслокацией генов в хромосомный локус, кодирующий ген Н-цепи Ig на хромосоме 14

В экваториальной Африке эта лимфома является эндемичной и связана с инфицированием В-клеток вирусом Эпштейна-Барр Лимфома Беркитта - это одна из опухолей, часто развивающихся у пациентов с иммуносупрессией (при СПИДе и медикаментозной иммуносупрессии). В клетках лимфомы Беркитта иногда обнаруживается геном вируса Эпштейна - Барр.

Фолликулярная лимфома

Фолликулярная лимфома представляет собой трансформированные В-клетки, в норме обнаруживаемые в фолликулах лимфатических узлов (рис. 17.11). В-клетки стимулируются антигеном в фолликуле, образуя зародышевый центр. Они могут отвечать на эту стимуляцию пролиферацией, переключением изотипов иммуноглобулинов и дифференцировкой в плазматические клетки. Если их антитела плохо соответствуют этому антигену или имеют к нему низкую аффинность, то клетки подвергаются апоптозу, или программируемой клеточной гибели. При фолликулярных лимфомах ген bcl-2, который продуцирует белок, препятствующий апоптозу, транслоцируется в ген Н-цепи Ig t(14;18) (см. рис. 17.10).


Рис. 17.11. Срез нормального лимфатического узла с указанием участков, вовлекаемых в Т- и В-клеточные лимфомы; ХЛЛ/ЛМЛ, лимфома из клеток мантийной зоны и фоликуллярная лимфома происходят из В-клеток

Это приводит к продолжительной экспрессии белка bcl-2, предотвращающего гибель клеток. Фактически, такие В-клеточные новообразования имеют только низкий уровень пролиферации, заболевание отличается длительным хроническим течением. Их фенотип (поверхностные CD-маркеры) соответствует фенотипу у нормальных В-клеток фолликулярного центра: CD19+, CD20+, CD10+ и поверхностные иммуноглобулины.

Лимфома из клеток мантийной зоны

В норме зародышевый центр окружен венцом малых покоящихся В-клеток, которые не ответили на антиген (см. рис. 17.11). Новообразования этих клеток мантийной зоны обладают таким же В-клеточным фенотипом, как и их нормальные двойники, CD19+, CD20+. CD5+, slgM. При многих лимфомах из мантийных клеток происходит транслокация гена bcl-1 в область гена Н-цепи Ig - t(ll; 14), приводящая к избыточной экспрессии белка циклина D1 (см. рис. 17.10). Циклин D1 в норме отвечает за стимуляцию прогрессии клеточного цикла от фазы G1 к фазе S, приводящей к делению клетки. Эта лимфома обладает более высокой пролиферативной активностью и более агрессивным течением, чем фолликулярная.

Лимфома из клеток краевой зоны

Лимфомы из клеток краевой зоны наиболее часто встречаются в лимфоидной ткани, ассоциированной со слизистой оболочкой (MALT) , и, что интересно, могут быть связаны с хронической антигенной стимуляцией или аутоиммунным заболеванием этого органа. Например, хроническая инфекция Helicobacter pilory желудка может привести к развитию лимфомы желудка, которую, таким образом, можно предотвратить терапией антибиотиками. Сходным образом у пациентов с аутоиммунным тиреоидитом (тupeoидит Хашимото) и аутоиммунным заболеванием слюнных желез (синдром Шегрена) существует высокий риск развития В-клеточной лимфомы в пораженном органе.

Взаимосвязь между этими аутоиммунными заболеваниями или инфекцией и лимфомой позволяет предложить две интересные и не противоречащие друг другу гипотезы. Во-первых, хроническая антигенная стимуляция обеспечивает благоприятную почву для развития В-клеточной лимфомы. В-клетки, в которых гены иммуноглобулинов продолжают подвергаться соматическим мутациям, могут накапливать трансформирующие мутации при продолжительной стимуляции. Во-вторых, дефект в регуляции В-лимфоцитов ввиду то ли внутренних причин, то ли недостаточного подавления их активности Т-лимфоцитами приводит как к аутоиммунному заболеванию, так и, возможно, к лимфоме.

Опухолевые клетки иммунной системы мигрируют по тем же путям, что и их нормальные двойники. Лимфома краевой зоны долгое время остается локализованной, а затем повторяет движение нормальных клеток MALT, перемещаясь в другие участки MALT.

Хронический лимфоцитарный лейкоз/лимфома из малых лимфоцитов

Считается, что хронический лимфоцитарный лейкоз (ХЛЛ) / лимфома из малых лимфоцитов (ЛМЛ) является опухолевым перерождением субпопуляции В-лимфоцитов, известных как В-1-клетки. У некоторых пациентов ее первым клиническим проявлением является лейкоз (с первичным вовлечением крови и костного мозга), тогда как у других больных сначала вовлекаются лимфатические узлы (см. рис. 17.11). Так же как и нормальные В-1-клетки, клетки ХЛЛ/ЛМЛ экспрессируют маркеры зрелых В-клеток CD19 и CD20, а также CD5 и поверхностный IgM.

Хронический В-клеточный лейкоз - это наиболее распространенный лейкоз в Северной Америке и Западной Европе. Особенно часто он встречается у людей старших возрастных групп. Такие больные крайне чувствительны к инфекции, что наводит на мысль о том, что их неопухолевые клетки функционируют недостаточно хорошо. Характерно наличие аутоантител, особенно против эритроцитов, приводящих к развитию гемолитической анемии.

Антитела могут синтезироваться опухолевым клоном или, что бывает чаще, неизмененными В-клетками. Взаимосвязь этих аутоиммунных состояний с лейкозом/лимфомой снова наводит на мысль о том, что лимфоидное новообразование возникает на месте нарушения иммунной регуляции или по причине ее возникновения. Заболевание характеризуется долгим клиническим течением, но возможно и массивное поражение каждого органа, периферической крови и костного мозга опухолевыми клетками.

Диффузная крупноклеточная лимфома из В-клеток

Диффузная крупноклеточная лимфома из В-клеток - это гетерогенная группа лимфом, которые могут возникать de novo на единственном участке и быть формой прогрессии одной из перечисленных медленно растущих лимфом (например, фолликулярной) или следствием плохо контролируемой инфекции вирусом Эпштейна-Барр в организме больных, получающих иммуносупрессивные препараты (например, у ВИЧ-позитивных лиц, больных после трансплантации органов или у пациентов с иммунодефицитом). Во всех случаях клетки экспрессируют В-клеточные маркеры CD19 и CD20 и часто - поверхностный Ig. Одна подгруппа имеет транслокацию bcl-6 - протоонкогена, который в норме действует как супрессор транскрипции некоторых генов, необходимых для нормального развития В-лимфоцитов и зародышевых центров.

Поведение возникших de novo диффузных крупноклеточных В-клеточных лимфом непредсказуемо. Благодаря современному микроанализу кДНК для этих разновидностей опухолей лимфомы разделили на две крупные группы. Это разделение связано с различиями в образцах генной экспрессии (продукция иРНК), причем выявлена корреляция между этими молекулярными образцами и поведением опухоли. Такая молекулярная характеристика должна привести к лучшему пониманию биологии лимфом и разработке практических рекомендаций к лечению.

Взаимосвязь инфекции вирусом Эпштейна-Барр с диффузными крупноклеточными лимфомами из В-клеток и лимфомой Беркитта у пациентов с иммуносуппрессией наглядно показывает, каковы последствия нарушения саморегуляции иммунной системы. Инфекция В-клеток вирусом Эпштейна - Барр (через рецептор вируса CD21) приводит к поликлональной пролиферации В-лимфоцитов. У здоровых индивидуумов В-клетки, инфицированные вирусом Эпштейна-Барр, удаляются из организма цитотоксическими Т-лимфоцитами.

Если Т-клеточный контроль оказывается недостаточным, инфицированные В-лимфоциты продолжают экспансивный рост, и в некоторых из них могут произойти дополнительные мутации, такие как транслокация гена с-тус, что вызовет злокачественную трансформацию клеток и последующий независимый рост. Например, вирус Эпштейна-Барр можно использовать для продления жизни В-клеток в тканевой культуре, в которой В-клетки не являются объектом, контролируемым Т-лимфоцитами. Это также важно в клинической практике: у пациентов, получающих иммуносупрессивную терапию, существует точка, в которой пока еще возможно предотвратить развитие В-клеточной лимфомы, прекратив терапию и разрешив иммунной системе организма сдерживать патологическую В-клеточную пролиферацию. Конечно, это невозможно у больных СПИД.

Опухоли плазматических клеток

Опухолевый рост плазматических клеток может происходить на ограниченном участке (изолированно), приводя к плазмоцитоме или на многих, преимущественно в костях, и тогда он называется множественной или плазмоклеточной миеломой. Как и для нормальных плазматических клеток, фактором роста для миеломных клеток является IL-6.

Опухолевые плазматические клетки могут продолжать синтезировать и секретировать свои продукты - белки, составляющие иммуноглобулины В большинстве случаев эти секретируемые моноклональные белки вызывают у пациента больше проблем, чем сами перерожденные клетки. Депозиты легких цепей, названные амилоидом, могут вызывать недостаточность разных органов, особенно почек. Выделение из мочи некоторых больных множественной миеломой свободных легких цепей иммуноглобулина - белка Бенс-Джонса - позволяет понять их структуру. Эти белки являются моноклональными; они определяются в сыворотке и иногда в моче в виде М-пика в у-области на электро-фореграмме.

Пик выше пограничной полосы формируется вследствие того, что все иммуноглобулины идентичны по размеру и заряду и мигрируют в одно и то же место. В большинстве случаев продуцируются моноклональные IgG; IgA являются следующим наиболее часто обнаруживаемым изотипом иммуноглобулина. Уровни других нормальных Ig у этих пациентов значительно снижаются, что делает их иммуносупрессивными по продукции антител и, таким образом, восприимчивыми к инфекции. До появления развернутой клинической картины миеломы у больных может появляться небольшое количество моноклональных Ig в течение многих лет. Многие пациенты остаются на этой стадии, и заболевание у них не прогрессирует. Маленькие М-пики могут быть обнаружены в ассоциации с другими лимфоидными новообразованиями, такими как ХЛЛ, и даже при неопухолевых состояниях.

Лимфоплазмоцитарная лимфома (макроглобулинемия Вальденстрема)

Лимфоплазмацитарная лимфома/макроглобулинемия Вальденстрема - это новообразование единственного клона В-клеток. При микроскопии оно выглядит как смесь лимфоцитов, плазматических клеток и чего-то промежуточного - лимфоплазмоцитоидных клеток. Опухолевые клетки находятся в лимфатических узлах, костном мозге и селезенке. Хотя эти лимфомы встречаются нечасто, они представляют интерес для иммунологов вследствие гиперпродукции IgM. Крупный размер и высокая концентрация IgM в крови может сочетаться с медленным кровотоком и «засорением» сосудов их агломератами (синдром повышенной вязкости крови). У некоторых пациентов IgM имеют патологическую структуру, вследствие чего при охлаждении они выпадают в осадок (с образованием криоглобулинов) и вызывают расстройства микроциркуляции в конечностях больных (пальцы рук и ног).

Т-клеточные новообразования

Острый лимфобластный лейкоз/лимфома из Т-клеток-предшественников

Острый лимфобластный лейкоз из клеток-предшественников Т-лимфоцитов (Т-ОЛЛ) - это новообразование из незрелых Т-клеток с характеристиками незрелых тимоцитов, остановившихся в своем развитии. Как показано на рис. 17.12, клетки Т-ОЛЛ экспрессируют все Т-клеточные маркеры (CD2, CD5 и CD7), которые появляются на ранних стадиях развития Т-клеток. Некоторые Т-ОЛЛ обладают характеристиками незрелых клеток тимуса и не экспрессируют CD4 или CD8 (т.е. они дважды негативные).


Рис. 17.12. Соотношение стадий развития Т-клеток и злокачественных новообразований из них

Большинство нормальных тимоцитов и клеток Т-ОЛЛ являются более зрелыми, экспрессируя оба маркера: и CD4, и CD8 (дважды позитивные); при этом CD3 на своей поверхности они экспрессируют в небольшом количестве или совсем не экспрессируют (их обозначают как общие тимоциты). В этих клетках еще не завершена реаранжировка генов их Т-клеточного рецептора (TCR) и все еще экспрессируется TdT. Острый лимфобластный лейкоз проявляется в виде лейкоза или тяжелого процесса в тимусе. Лечение не столь успешно, как при В-ОЛЛ.

Новообразования из периферических Т-клеток

Клинические проявления лимфом из периферических Т-клеток разнообразны. Они обнаруживаются там, куда обычно мигрируют Т-клетки, а именно в коже, легких, стенках сосудов, ЖКТ и лимфатических узлах. Они также сохраняют некоторые функции нормальных зрелых Т-клеток. Вследствие этого продукция цитокинов злокачественными клетками приводит к скоплению воспалительных клеток, в том числе эозинофилов, плазмоцитов и макрофагов. Часто лимфы из периферических Т-клеток более агрессивны, чем из В-клеток. Две болезни из этой группы рассмотрим подробнее.

Кожная Т-клеточная лимфома

Если опухоль ограничена пределами кожи, Т-клеточную кожную лимфому часто называют ее исторически сложившимся названием «грибовидный микоз», поскольку раньше считалось, что пациенты страдают от хронической грибковой инфекции, при которой отмечаются восковое перерождение и истончение кожи в течение многих лет. Сейчас понятно, что это кожное заболевание обусловлено инфильтрацией эпидермиса злокачественными СD4+-Т-клетками. В дальнейшем клетки могут распространяться в лимфатические узлы и даже в кровь. Злокачественные Т-клетки, обнаруживаемые в кровотоке, называются клетками Сезари; соответственно, у больного развивается синдром Сезари.

Т-клеточная лимфома/лейкоз взрослых

Т-клеточная лимфома/лейкоз взрослых (ТЛЛВ) представляет собой агрессивное Т-клеточное новообразование. Его описали в 1970-е гг. в одной из областей Японии, где оно являлось эндемичным. Также его обнаружили у обитателей Карибских островов, в некоторых частях центральной Африки и в небольшой области на юго-востоке США. Обычно ТЛЛВ является новообразованием из зрелых СD4+-Т-клеток. Для таких клеток аутокринным фактором роста является IL-2. При ранних попытках терапии показано, что это новообразование временно (несколько месяцев) отвечает на введение антител (названных как анти-Тас); как было выявлено позже, они являются специфичными для ос-цепи рецептора к IL-2 (CD25).

Заболевание вызывается человеческим Т-клеточным лимфотропным вирусом I типа из семейства ретровирусов (human Т cell lymphotropic virus 1 - HTLV-1), который был описан и выделен еще до открытия СПИДа и ВИЧ. Геномная структура провируса похожа на ВИЧ; она тоже содержит регион LTR и кодирует структурные и регуляторные белки, а также вирусные ферменты (обратную транскриптазу, интегразу и протеазу).

Вирусный белок Tax, который трансактивирует транскрипцию HTLV-1 путем связывания с областью LTR, активирует также и клеточные гены, в том числе те, которые кодируют IL-2, α-цепь IL-2R и гормон, подобный паратиреоидному (в обычных условиях не экспрессируется Т-клетками). Поэтому активация провирусной транскрипции связана с активацией и пролиферацией Т-клеток. У пациентов с ТЛЛВ часто отмечают значительно повышенную концентрацию кальция, что является результатом усиленного синтеза паратиреоидподобного гормона

Пути передачи HTLV-1 похожи на пути передачи ВИЧ в том смысле, что он передается через кровь и жидкости тела; наиболее эффективен путь передачи через грудное молоко. Поэтому многие пациенты инфицируются HTLV-1 в младенческом возрасте. Инкубационный период у этого вируса длительный, обычно 20 - 40 лет. В основном вирус инфицирует СD4+-Т-клетки, а также поражает нервную систему. У некоторых пациентов заболевание имеет клинические черты неврологического процесса.

Предметом продолжительной дискуссии является происхождение клеток Рид - Штернберга, поскольку они не экспрессируют маркеров никаких клеточных линий и характеризуются экспрессией только CD15 и CD30. В последних исследованиях с использованием молекулярных технологий была показана возможность реаранжировки генов lg, что подтверждает их происхождение из В-клеточной линии. Открытие гипермутации в генах иммуноглобулинов свидетельствует, что клетки Рид - Штернберга образовались из В-клеток, уже прошедших зародышевый центр. Хотя злокачественные клетки и были идентифицированы как В-клетки, по течению эти лимфомы отличаются от крупноклеточных В-клеточных лимфом, что и является причиной того, что их продолжают классифицировать как самостоятельную нозологию. Лимфомы, таким образом, подразделяют на лимфомы Ходжкина и неходжкинские.

Иммунотерапия

Увеличившиеся знания по биологии лимфом в сочетании с техническими возможностями производства моноклональных антител и белков привели к разработке нового поколения терапевтических средств. В настоящее время химерные и гуманизированные антитела, направленные, в частности, против CD20, широко используются в лечении В-клеточных лимфом. Если применяют только одни антитела («холодное» использование), они могут вызывать уничтожение опухолевых клеток путем их опсонизации при покрытии антителами, а в случае использования конъюгатов этих антител за непосредственное уничтожение клетки отвечают токсины.

Кроме современной химиотерапии дополнительно используют вещества, блокирующие цитокины или цитокиновые рецепторы, необходимые для пролиферации злокачественных клеток. Традиционные средства химиотерапии, которые в основном являются неспецифическими веществами, уничтожают все делящиеся клетки. Технологии, использованные при разработке этих новых специфичных препаратов, также широко применяются при разработке средств для лечения аутоиммунных заболеваний и нелимфоидных онкологических заболеваний, таких как рак молочной железы.

Иммунная система в норме работает как тщательно отрегулированная сеть, отвечающая на патогенные факторы извне, но не причиняющая никакого вреда самой себе. Причем после того как угроза миновала, иммунная система возвращается в более спокойное состояние, но уже обладая памятью о произошедших событиях. Истощение , хроническая стимуляция или возможность неконтролируемого роста одного из компонентов нарушают работу оставшихся элементов. Таким образом, поскольку регулирование в сети нарушено, развитие каждого из трех главных категорий расстройств: иммунодефицита, аутоиммунного заболевания или лимфоидного новообразования, делает возможным развитие еще одного или даже двух типов заболеваний.

Выводы

1. Иммунодефицитные расстройства называются первичными, если причиной заболевания является дефицит, и вторичными, если недостаточность развивается вследствие других заболеваний или в результате лечения.

2. Иммунодефицитные заболевания могут развиваться в результате нарушений развития или функционирования В-клеток, Т-клеток, фагоцитирующих клеток или компонентов комплемента.

3. Иммунодефицитные расстройства вызывают у пациентов предрасположенность к рецидивирующим инфекциям. Тип развивающейся инфекции обычно зависит от того, какое именно звено иммунной системы нарушено. Дефекты гуморального звена иммунитета приводят к повышенной восприимчивости к бактериальным инфекциям; дефекты в клеточно-опосредованном иммунитете - к вирусным и грибковым инфекциям; дефекты фагоцитирующих клеток - к инфекциям пиогенными микроорганизмами, а дефекты в системе комплемента - к бактериальным инфекциям и аутоиммунным расстройствам.

4. Иммунодефициты проявляются одним типом дефектов или расстройств иммунной системы. Другими типами иммунологических расстройств являются нерегулируемая пролиферация В- или Т-лимфоцитов, избыточное образование продуктов лимфоцитарных или фагоцитирующих клеток и нерегулируемая активация компонентов комплемента. Это может приводить к ассоциациям иммунодефицитов с аутоиммунными заболеваниями или злокачественными новообразованиями.

5. Инфицируя и уничтожая СD4+-лимфоциты, ВИЧ вызывает выраженное иммуносупрессивное заболевание, известное как СПИД.

6. Лимфоидные новоообразования иммунной системы развиваются в результате неконтролируемой моноклональной пролиферации, которую можно соотнести с развитием нормальных клеток на определенной стадии дифференцировки. При многих злокачественных лимфоидных новообразованиях обнаруживают специфические хромосомные транслокации, вызывающие нарушения регуляции процессов клеточной пролиферации или смерть. Некоторые из них связаны с инфекциями вирусами, такими как вирус Эпштейна-Барр и HTLV-1, выступающими или как стимуляторы клеточного роста, или как онкогенные вирусы.

Р.Койко, Д.Саншайн, Э.Бенджамини

по биологии

«Лимфоидные клетки»

Ежесуточно в первичныхлимфоидных органах — тимусе и постнатальном костном мозге — образуется значительное количество лимфоцитов. Часть этих клеток мигрирует из кровотока во вторичные лимфоидные ткани — селезенку, лимфатические узлы и лимфоидные образования слизистых оболочек. В организме взрослого человека содержится примерно 10 12 лимфоидных клеток и лимфоидная ткань в целом составляет приблизительно 2% обшей массы тела. При этом на лимфоидные клетки приходится примерно 20% циркулирующих с кровотоком лейкоцитов. Многие зрелые лимфоидные клетки относятся к долгоживущим и могут многие годы существовать в качестве клеток иммунологической памяти.

Лимфоциты морфологически разнообразны

В обычном мазке крови лимфоциты различаются как по размерам, так и по морфологии. Варьирует соотношение величина ядра: величина цитоплазмы, а также форма самого ядра. В цитоплазме некоторых лимфоцитов могут содержаться азурофильные гранулы.

При световой микроскопии мазков крови, окрашенных, например, гематологическим красителем Гимза, можно обнаружить два морфологически различных типа циркулирующих лимфоцитов: первый — относительно мелкие клетки, в типичном случае лишенные гранул, с высоким соотношением Я:Ц — и второй — более крупные клетки с меньшим соотношением Я.Ц, содержащие в цитоплазме гранулы и известные как большие гранулярные лимфоциты.

Покоящиеся Т-клетки крови

Большая часть их экспрессирует бв-Ф-клеточные рецепторыи может иметь один из двух описанных выше типов морфологии. Большинствохелперных Т-клетоки частьцитотоксических Т-лимфоцитовотносятся к малым лимфоцитам, лишенным гранул и имеющим высокое соотношение Я:Ц. Кроме того, в их цитоплазме присутствуют особая структура, названная тельцем Голла, — скопление первичных лизосом возле липидной капли. Тельце Голла легко выявить при электронной микроскопииили цитохимически, методом определения лизосомных ферментов. Менее 5% Тх-клеток и примерно половина Тц имеют другой тип морфологии, характерный для БГЛ, с рассеянными по цитоплазме первичными лизосомами и хорошо развитым комплексом Гольджи. Интересно, что у мыши нет цитотоксических Т-клеток, сходных по морфологии с БГЛ.

Признаки больших гранулярных лимфоцитов свойственны также еще одной субпопуляции Т-лимфоцитов, а именно Т-клеткам с гд-рецепторами. В лимфоидных тканях эти клетки имеют дендритнуюморфологию;при культивировании in vitro они способны прикрепляться к подложке, принимая в результате разнообразную форму.

Неактивированные В-клетки крови.Эти клетки не содержат тельца Голла и морфологически не сходны с большими гранулярными лимфоцитами; их цитоплазма в основном заполнена рассеянными монорибосомами.В кровотоке иногда можно наблюдать активированные В-клетки с развитым шероховатым эндоплазматиче-ским ретикулумом.

НК-клетки Нормальные киллерные клетки, подобно гд-Ф-клеткам и одной из субпопуляций Тц, имеют морфологию БГЛ. Однако при этом в их цитоплазме больше азурофильных гранул, чем у гранулярных Т-клеток.

Лимфоциты экспрессируют особые у каждой субпопуляции поверхностные маркеры

На поверхности лимфоцитовприсутствует множество разнообразных молекул, которые могут служить меткамиразличных субпопуляций. Значительная часть этих клеточных маркеров в настоящее время легко идентифицируется с помощью специфических моноклональных антител. Разработана систематизированная номенклатура маркерных молекул; в ней группы моноклональных антител, каждая из которых специфически связывается с определенной маркерной молекулой, обозначены символом CD. За основу CD-номенклатуры принята специфичность прежде всего мышиных моноклональных антител к лейкоцитарным антигенам человека. В создании этой классификации участвуют многие специализированные лаборатории разных стран. Для ее обсуждения проведена серия международных рабочих встреч, на которых удалось определить характерные наборы образцов моноклональных антител, связывающихся с различными популяциями лейкоцитов, а также молекулярные массы выявляемых при этом маркеров. Моноклональные антитела совпадающей специфичности связывания объединяют в одну группу, присваивая ей номер в системе CD. Однако в последнее время принято таким образом обозначать не группы антител, а маркерные молекулы, распознаваемые данными антителами

В дальнейшем молекулярные маркеры стали классифицировать в соответствии с информацией, которую они несут об экспрессируюших их клетках, например:

Популяционные маркеры, которые служат характерным признаком данного цитопоэтического ряда, или линии; пример — маркер CD3, выявляемый только на Т-клетках;

Дифференцировочные маркеры, экспрессируемые временно, в процессе созревания; пример — маркер CD1, который присутствует на развивающихся тимоцитах, но не на зрелых Т-клетках;

Маркеры активации, такие как CD25 — низкоаффинный Т-клеточный рецептор для фактора роста, экспрессируемый только на Т-клетках, активированных антигеном.

Иногда такой подход к классификации маркеров весьма полезен, однако не всегда он возможен. У некоторых популяций клеток маркер активации и маркер дифференцировки — это одна и та же молекула. Например, CD 10, присутствующий на незрелых В-клетках, исчезает при созревании, но появляется вновь при активации.

Кроме того, маркеры активации могут постоянно присутствовать на клетках в низкой концентрации, но в более высокой — после активации. Так, под действием ИФу возрастает экспрессия молекул главного комплекса гистосовместимостикласса II на моноцитах.

Клеточные маркеры образуют несколько семейств

Компоненты клеточной поверхности относятся к различным семействам, гены которых произошли, вероятно, от нескольких предковых. Маркерные молекулы из разных семейств различаются по структуре и образуют следующие основные группы:

Суперсемейство иммуноглобулинов, включающее молекулы, близкие по строению к антителам; к нему относятся CD2, CD3, CD4, CD8, CD28, молекулы МНС классов I и II, а также многие другие;

Семейство интегринов — гетеродимерных молекул, образованных а- и в-цепями; существует несколько подсемейств интегринов; все члены одного подсемейства имеют общую в-цепь, но разные, уникальные в каждом случае, б-цепи; в одном из подсемейств ф 2 -ин-тегрины) в-цепь представляет собой маркер CDI8. В комбинации с CDI la, CDI lb, CDI Ic или aD он образует соответственно лимфоци-тарные функциональные антигены LFA-1, Мас-1и с 150, 95и молекулы клеточной поверхности быв 9 , часто выявляемые на лейкоцитах. У второго подсемействав-цепь представляет собой маркер CD29; в сочетании с различными б-цепями он образует маркеры поздней стадии активации;

Селектины, экспрессируемые налейкоцитахили на активированных клетках эндотелия. Они обладают лектиноподобной специфичностью в отношении Сахаров в составе высокогликозилированных мембранных гликопротеинов; к селектинам относится, например, CD43;

Протеогликаны, имеющие ряд глюкозаминогликановых участков связывания; пример — хондроитинсульфат.

Другие семейства клеточных маркеров — это суперсемейство рецепторов для фактора некроза опухолейи фактора роста нервов, суперсемейство лектинов С-типа, включающее, например, CD23, а также суперсемейство многодоменных трансмембранных рецепторных белков, в которое входит рецептор для ИЛ-6.

Следует подчеркнуть, что маркеры, экспрессируемые лимфоцитами, можно обнаружить и на клетках иных линий. Так, CD44 часто выявляется на клетках эпителия. Молекулы клеточной поверхности можно выявить с помощью флуоресцирующих антител, используемых в качестве зондов. На этом подходе основан метод проточной иммунофлуоресцентной цитометрии, позволяющей сортировать и подсчитывать клетки в зависимости от их размеров и параметров флуоресценции. С помощью этого метода удается проводить детальную сортировку популяций лимфоидных клеток.

Т-клетки различаются по своим антигенраспознающим рецепторам

Маркером, характеризующим линию Т-клеток, служит Т-клеточный рецептор для антигена. Имеется два различных типа ТкР, и тот и другой — гетеродимеры из двух соединенных ди-сульфидными связями полипептидных цепей. ТкР первого типа образован цепями б и в, второго типа, сходный по структуре — цепями г и д. Оба рецептора ассоциированы на клеточной поверхности с пятью полипептидами СОЗ-комплекса, образуя вместе с ним рецепторный комплекс Т-клетки. Примерно 90—95% Т-клеток в крови представляют собой бв-Ф-клетки, остальные 5—10% — гд-Ф-клетки.

бв-Ф-клетки различаются в свою очередь по экспрессии CD4 или CD8

бв-Ф-клетки подразделяются на две различные, неперекрывающиеся субпопуляции: клетки одной из них несут маркер CD4 и в основном «помогают» в осуществлении иммунного ответа или «индуцируют» его, клетки другой несут маркер CD8 и обладают преимущественно цитотоксической активностью. Т-клетки CD4 + распознают антигены, к которым они специфичны, в ассоциации с молекулами МНС класса II, тогда как Т-клетки CD8 + способны узнавать антигены в ассоциации с молекулами МНС класса 1. Таким образом, возможность взаимодействия Т-клетки с клеткой другого типа зависитот присутствия на первой маркера CD4 или CD8. Небольшая часть бв-Ф-клеток не экс-прессирует ни CD4, ни CD8. Подобным же образом «дважды отрицательны» большинство циркулирующих гд-Ф-клеток, хотя некоторые из них все же несут CD8. Напротив, большая часть гд-Ф-клеток в тканях экспрессирует этот маркер.

бв-Ф-клетки CD4 + и CD8 + подразделяются на функционально различные субпопуляции

Как отмечено выше, примерно 95% Т-клеток CD4 + и 50% Т-клеток CD8 + морфологически представляют собой малые негранулярные лимфоциты. Эти популяции можно дифференцировать дальше по фенотипической экспрессии CD28 и CTLA-4 на функционально различные субпопуляции. Экспрессируемый Т-клетками CD4 + маркер CD28 обеспечивает передачу кос-тимулирующего сигнала активации при распознавании антигена.Лигандами CD28 служат молекулы В7-1и В7-2на АПК. Гомологичную CD28 молекулу CTLA-4 Т-клетки CD4 + начинают экспрессировать после активации. CTLA-4 связывается с теми же лигандами, что и CD28, тем самым ограничивая активацию. Кроме того, бв-Ф-клетки экспрессируют различные изоформы общего лейкоцитарного антигена, CD45. Считается, что CD45RO, а не CD45RA, связан с клеточной активацией. Для выделения функционально различных субпопуляций бв-Ф-клеток используют также другие критерии, в частности экспрессию клеточных маркеров нормальных киллерных клеток, выявляемых на 5—10% циркулирующих Т-клеток. Эти клетки образуют ИЛ-4, но не ИЛ-2, и дают слабый пролиферативный ответ на антигены и митогены.

бв-Ф-лимфоциты можно классифицировать также по профилю цитокинов

ГД-Ф-клетки относительно часто встречаются в эпителии слизистых оболочек, но представляют лишь минорную субпопуляцию среди циркулирующих Т-клеток. У мыши почти все внутриэпи-телиальные лимфоциты относятся к гд-Ф-клеткам, экспрессирующим CD8 - маркер, который отсутствует на большинстве циркулирующих гд-Ф-клеток. Как установлено, гд-Ф-клетки CD8 + обладают особым репертуаром Т-клеточных рецепторов, специфичных к определенным бактериальным и вирусным антигенам. Согласно современной точке зрения, эти клетки могут играть важную роль в защите слизистых оболочек организма от инфекции.

Т-клетки обладают рядом общих маркеров с клетками других линий

До сих пор описывали клеточные маркеры и антигенспецифичные рецепторы, характерные для отдельных субпопуляций Т-лимфоцитов. Однако ряд молекул экспрессируется на поверхности всех Т-клеток, а также на клетках других линий. Хороший пример — рецепторы для эритроцитов барана. В норме молекула CD2, связываясь с соответствующими лигандами, принимает участие в процессе активации Т-клеток вместе с ТкР — CD3-комплексом и другими гликопротеинами в составе мембран. Вместе с тем CD2 выявляется также у 75% НК-клеток CD3 - . Другая участвующая в Т-клеточной активации молекула — это маркер CD5, экспрессируемый на всех Т-клетках и на одной из субпопуляций В-клеток. Молекула CD5 может связываться с CD72, но вопрос о ее роли в качестве физиологического лиганда В-клеток остается открытым. Маркер CD7 присутствует почти на всех НК- и Т-клетках. Полный перечень Т-клеточных CD-маркеров, часть которых экспрессируется и на других клетках гемопоэтического происхождения, приведен в приложении. Т-клетки мыши экспрессируют маркеры, сходные с обнаруженными на Т-клетках человека.

Супрессорные Т-клетки

Получены очевидные функциональные доказательства существования антигенспецифичных супрессорных Т-клеток, однако эти клетки, по-видимому, не составляют отдельной субпопуляции Т-клеток с исключительно супрессивной функцией. Доказано также, что Т-клетки. как CD4 + , так и CD8 + , способны подавлять иммунный ответ либо путем прямого цитотоксического действия на антигенпрезентируюшие клетки, либо путем выделения «супрессивных» цитокинов, либо путем передачи сигнала отрицательной регуляции, либо посредством идиотип-антиидиотипических сетевых взаимодействий.

От 5 до 15% циркулирующих с кровью лимфоидных клеток — это В-лимфоциты, выявляемые по наличию поверхностных иммуноглобулинов. Молекулы Ig синтезируются конститутивно; они встроены в цитоплазматическую мембрану клетки и функционируют как антигенспецифичные рецепторы. Такие рецепторы можно определить на клеточной поверхности, используя меченные флуорохромом антитела к иммуноглобулину крови экспрессируют IgG, IgA и lgE, но в определенных областях тела такие клетки встречаются с большей частотой; например, В-клеток, несущих.

Лектины — это белки растительного и бактериального происхождения, связывающие углеводы. Некоторые из них способны активировать лимфоциты, перекрестно взаимодействуя с ВкР или ТкР, и служить митогенами. Считается, что митогенная стимуляция лимфоцитов in vitro довольно близко воспроизводит активацию специфическими антигенами. Лектины ФГА и КонА стимулируют Т-лимфоциты мыши и человека. Бактериальный липополисахаридстимулирует В-клетки мыши, а митоген лаконоса вызывает пролиферацию и В-, и Т-клеток человека.

Исследования in vitro с применением этих агентов показали, что активация Т- и В-клеток вызывает синтез цитокинов и рецепторов для них. Взаимодействие цитокинов с рецепторами индуцирует вступление клеток в цикл деленияи их последующее созревание с образованием эффекторных клеток или клеток иммунологической памяти. В условиях in vitro клетки памяти рециркулируют и в итоге расселяются по Т- и В-зависимым областям лимфоидных тканей, где они в дальнейшем остаются, сохраняя готовность к ответу при новой встрече с тем же антигеном.

Сигнал активации передают «вторые посредники»

В результате взаимодействия покоящихся лимфоцитов с антигеном индуцируется цепь биохимических процессов, приводящих к образованию внутри В- или Т-клетки «вторых посредников». Эти посредники ответственны за последующие изменения на уровне генов. Существует несколько основных механизмов активации лимфоцитов, но до конца они пока не ясны. Как в Т-, так и в В-клетках в передаче сигнала активации участвует гуанозинтрифосфат-связывающийбелок, который стимулирует метаболизм фосфатидилинозитола. В результате образуются два вторых посредника — инозитол-1,4,5-трифосфати диацилглицерол. Посредник ЙС3 индуцирует выход ионов Са 2+ из внутриклеточных депо, а ДАГ активирует протеинкиназу С, которая вместе с другими киназами фосфолирует ряд компонентов плазматической мембраны, что приводит к появлению факторов транскрипции и последующей экспрессии определенных генов. Таким образом, сразу после контакта Т-лимфоцитов с антигеном на их поверхности экспрессируется ряд молекул, в том числе gp39 и рецептор для ИЛ-2. Дальнейшие межклеточные взаимодействия с участием этих молекул вызывают пролиферацию и дифференцировку лимфоцитов.

Дифференцировка В-клеток приводит к образованию плазматических клеток и клеток иммунологической памяти

После активации митогеном или антигеном Т- и В-клетки претерпевают характерные ультраструктурные изменения, превращаясь в лимфобла-сты. Впоследствии многие В-лимфобласты созревают в антителообразующие клетки, которые in vivo развиваются затем в окончательно дифференцированные плазматические клетки. В некоторых В-лимфобластах не образуется цистерн шероховатого эндоплазма-тического ретикулума. Такие клетки присутствуют в центрах размножения внутри лим-фоидных фолликулов; они названы центральными клетками фолликула, или центроцитами.

Как показывает световая микроскопия, цитоплазма плазматических клеток базофильна, т. е. обладает сродством к основным красителям. Это свойство цитоплазмы объясняется присутствием в ней больших количеств РНК, обеспечивающей синтез антител на рибосомах шероховатого ЭР. С помошью электронного микроскопа в плазматических клетках можно наблюдать параллельные ряды шероховатого ЭР. Эти клетки редко появляются в кровотоке, составляя не больше 0,1% циркулирующих лимфоцитов. В норме плазматические клетки встречаются только во вторичных лимфоидных органах и тканях, и, кроме того, их довольно много в красном костном мозге. Антитела, образуемые одной плазматической клеткой, обладают одной антигенной специфичностью и принадлежат к одному изотопу иммуноглобулинов. Их можно выявить в цитоплазме этих клеток с помощью меченных флуорохромом антиглобулиновых антител. Плазматические клетки имеют короткую продолжительность жизни; просуществовав лишь несколько дней, они погибают в процессе апоптоза.

Маркеры активации на лимфоцитах

Активация Т- и В-клеток вызывает синтез de novo ряда поверхностных маркеров и увеличение экспрессии других.

К этим маркерам активации относятся молекулы межклеточной адгезии, обеспечивающие более эффективное взаимодействие активированных клеток с другими, а также рецепторы факторов роста и дифференцировки, необходимые для постоянной пролиферации и созревания клеток. Один из них — рецептор для ИЛ-2, экспрессируемый Т-клетками после активации; он состоит из трех субъединиц. В состоянии покоя Т-клетки постоянно экспрессируют г-цепьэтого рецептора, а некоторые из нихобразуют также его в-цепь. Активация вызывает синтез б-субъединицы ИЛ-2Ри образование гетеротримерного высокоаффинного ИЛ-2Р. Временно активация Т-клеток вызывает также экспрессию gp39и рецепторов трансферрина, CD38 и CD69. Эти маркеры появляются в ранней фазе онтогенеза Т-клеток, но исчезают в ходе внутритимусного развития. Поздними маркерами активации Т-клеток человека служат молекулы МНС класса 11. На Т-клетках, в частности Т-клетках иммунологической памяти, экспрессируется как поздний маркер активации CD29. Поэтому функцию «памяти» субпопуляции Т-клеток CD4 + CD29 + можно интерпретировать как индуцированное активацией увеличение числа различных молекул межклеточной адгезии, которые облегчают взаимодействие этих Т-клеток с другими, если организм встречается с данным антигеном вновь.

К маркерам активации В-клеток относятся высокоаффинный ИЛ-2Р и другие рецепторы для факторов роста и дифферецировки, таких как ИЛ-3. ИЛ-4, ИЛ-5 и ИЛ-6. Все эти рецепторы изучены методами молекулярного клонирования и секвенирования. Кроме того, на активированных В-клетках экспрессируются рецепторы трансферринаи в повышенной концентрации мембранные антигены МНС класса II. Экспрессируемый на активированных В-клетках человека и мыши маркер CD23участвует в индукции клеточного деления. Маркер CD38 отсутствует на зрелых В-клетках человека, но обнаруживается на конечной стадии дифференцировки плазматических клеток и клеток центров размножения, а также на В-клетках очень ранних стадий созревания. Молекулы специфического плазмоцитарного антигена-1 найдены на В-клетках человека только в плазмоцитарной стадии их дифференцировки. Клетки иммунологической памяти, выявляемые в центрах размножения внутри вторичных лимфоидных фоликулов, не экспрессируют ни IgD, ни CD22.

К маркерам активации З К-клеток относятся молекулы МНС класса II.

Вчера беседовали с товарищем о том, почему даже самые современные лекарства помогают лишь части пациентов, которым они показаны, и почему степень терапевтического эффекта у разных пациентов неодинаковая.

Помню, был такой анекдот (бородатый, наверное) , что, дескать, в военно-полевых условиях все заболевания делятся на две категории: «само пройдет» и «лечить бесполезно». В этой шутке только доля шутки, потому что относительно недавно именно так и выглядели возможности медицины. В статье я показывал приблизительную диаграмму эффективности лекарств, в зависимости от их класса.

Прорывом в возможностях стало появление антибиотиков, которые впервые сделали многие тяжелые заболевания излечимыми. Но в отношении других болезней с хронически-прогрессирующим или рецидивирующим-ремитирующим течением особого успеха не было очень долго. Перелом произошел в конце 20 века, когда накопленные знания о молекулярных и клеточных механизмах заболеваний встретились с новыми техническими возможностями создания лекарств.

Появились препараты, которые действуют на определенные мишени заболевания: рецепторы на клетках, растворимые в крови и тканевой жидкости цитокины и медиаторы, и так далее. Если, например, первые конвенциональные препараты химиотерапии действовали на все активно-делящиеся клетки, в том числе и здоровые, то новые - только на те, на которых есть определенная, характерная для заболевания мишень.

Такие препараты сразу назвали красивым термином «таргетные лекарства» и возложили на них большие надежды, однако, прошло время, и стало понятно, что их эффект ограничен. Эти лекарства помогают не всем и не одинаково.

Вот, например, в группе воспалительных заболеваний кишечника (ВЗК) моноклональные антитела против мощного провоспалительного цитокина TNFα, роль которого в патогенезе ВЗК доказана, обладают лишь ограниченной эффективностью, помогая достичь длительной ремиссии только части пациентов. Еще часть пациентов в течение лечения сначала достигает ремиссии, а потом выходит из нее.

Почему так происходит, ведь TNFα вовлечен во все или во многие патологические процессы при ВЗК? Научные исследования продолжаются и постоянно докладывают в корзинку знаний что-то новое. Оказывается, не меньшее значение в патогенезе этих заболеваний имеет процесс перемещения T- и В-лимфоцитов из периферической крови в ткань кишки. Появились антитела против интегриновых молекул, нарушающие процессы этой миграции. Но увы, эффективность и этих лекарств тоже оказалась ограниченной.

Исследователи во всем мире уже осознали, что механизмы, регулирующие процессы в нашем организме, столь сложны и разнообразны, что создать «универсальное лекарство» невозможно, да и двух одинаковых пациентов тоже не бывает. Поэтому сейчас начинается новый виток эволюции клинических исследований и процесса разработки новых лекарств. Новая концепция называется персонализованная медицина , в ее основе лежит индивидуальное предсказание эффективности на основании детального изучения взаимосвязи ответа на лечение с личными молекулярно-генетическими особенностями человека.

Про принципы персонализованной медицины я уже говорил, а в этом посте я хотел проиллюстрировать многообразие механизмов заболеваний и их мишеней на примере относительно недавно открытого типа лимфоцитов.

Врожденная лимфоидная клетка

Вы слышали, наверняка, что иммунную систему человека принято делить на две под-системы: врожденный (или неспецифический) иммунитет и приобретенный (или специфический и адаптивный) .

Врожденный иммунитет - это совокупность эволюционно более древних клеток и механизмов, обладающих способностью мгновенно реагировать на угрозы - чужеродные организмы или изменения в собственных тканях. Реакция быстрая, но не адаптивная. То есть врожденный иммунитет не способен соревноваться со способностями микроорганизмов, вирусов и некоторых собственных клеток человека постоянно изменяться. Клетки и рецепторы врожденного иммунитета могут распознавать только консервативные, не склонные к быстрым эволюциям, конструкции. Поэтому, генетически гибкий организм эту защиту может обойти.

Клетки приобретенного иммунитета обладают уникальной способностью к адаптации. Она всякий раз требует времени для созревания, но зато позволяет с очень высокой различать меняющиеся чужеродные организмы, находить их и уничтожать.

Эта очень уютное разделение, но в значительной степени оно условно. Увы, Природе не до нашего удобства, и она не склонна к таким полярным градациям. Мы считали, что лимфоциты, обладающие феноменом соматической рекомбинации генов, кодирующих антиген-специфические рецепторы - это инструмент приобретенного иммунитета. Однако, недавно оказалось, что есть особый класс зрелых лимфоцитов, у которых нет антигенных рецепторов, зато есть большой арсенал продуцируемых цитокинов и масса разнообразных иммунных и регулирующих функций.

Этот класс лимфоцитов назвали Innate Lymphoid Cells ( ILCs) , то есть врожденные лимфоидные клетки (розовые клетки на заглавной картинке) . Класс новый, хотя его прототип, натуральные киллеры, известны еще с 1975 года. ILC, как и обычные лимфоциты, происходит от общего лимфоидного предшественника (CLP) , но по мере созревания и под воздействием факторов микроокружения, пути «обычных» лимфоцитов системы приобретенного иммунитета и ILC-клеток расходятся.

ILC составляют лишь очень небольшой процент от общего количества циркулирующих в крови лимфоцитов, но их роль в регулировании защиты организма от чужеродных микроорганизмов, в контроле воспаления и заживления и перестройки ткани оказались очень существенными.

В организме ILC рассредоточены преимущественно в барьерных тканях то есть там, где внешняя среда граничит с внутренней средой организма, например, в слизистых. Больше всего ILC в месте максимальной концентрации всех иммунокомпетентных клеток нашего организма - в лимфоидной ткани слизистой оболочки пищеварительного тракта.

Здесь, как полагают ученые, ILC отвечают за контроль нашего мирного сосуществования с населяющими слизистые ЖКТ бактериями «нормальной флоры». Мы их считаем нормальными по той простой причине, что за долгое время совместной эволюции и они, и мы адаптировались друг к другу так, что каждый вид получает от совместного проживания больше пользы, чем вреда.

Они защищают нас от инфекций и помогают пищеварению, мы даем им убежище и пищу, а также не убиваем их. Этот симбиоз достигается благодаря сохранению статуса кво . Например, симбионтам нельзя пересекать эпителиальный барьер, а также размножаться интенсивнее дозволенного. Этот запрет регулируется выработкой слизи, содержащей большое количество антимикробных веществ и секреторных форм иммуноглобулина А, плотностью эпителиального слоя и, дежурящими под ним, и лимфоцитами.

Чем заняты ILCs?

Сейчас эти клетки разделили на три класса, в зависимости от молекул на их мембранах, продуцируемых ими цитокинов и выполняемых функций. Классы названы просто: ILC1, ILC2 и ILC3.

Общим свойством всех врожденных лимфоидных клеток является то, что они очень быстро и мощно реагируют на сигналы, исходящие от эпителиальных клеток, антиген-презентирующих клеток и других ILC-клеток. В ответ на активацию они начинают продуцировать характерные для своего класса цитокины:

  • ILC1 специализируются на интерфероне-гамма и TNFα,
  • ILC2 синтезируют интерлейкины -4, -5, -9 и -13, а
  • ILC3 - преимущественно TNFα, интерлейкин-17а и интерлейкин-22.

У каждого класса этих клеток своя зона ответственности в рамках неспецифического (врожденного) иммунного ответа -

На фотографии слева токсоплазма внедряется в клетку, справа - токсоплазмы в ткани печени человека.

ILC3-клетки быстро отвечают на инфекцию грибами и внеклеточными бактериями , например, кишечными бактериями rodentium . В ответ на это ILC3 и при помощи дендритных клеток, они начинают продуцировать интерлейкин-22 и -17, необходимые для защиты ткани.

На фотографии Citrobacter rodentium

Интерлейкин-22 действует преимущественно на эпителиальные клетки и стимулирует в них продукцию антимикробных пептидов, слизи и других факторов защиты. Все эти факторы ограничивают размножение и распространение патогенных и оппортунистических бактерий, а также повреждение ткани. Интерлейкины-17 и -22 промотируют продукцию антимикробных пептидов и хемокинов, способствующих миграции нейтрофилов из крови в ткань.

Другие свойства ILC

Врожденные лимфоидные клетки помогают защищать ткань пищеварительного тракта от патогенных микроорганизмов и контролировать колонизацию слизистой симбиотическими бактериями. Если балансы сил сохранены, то контроль осуществляется без воспаления и незаметно для человека.

Однако, если в силу каких-то причин граница между внутренней и внешней средой дает брешь - возможен конфликт между иммунной системой и бактериями нормальной флоры. Если он произойдет, тогда в стенки кишки разовьется воспаление, и в нем помимо, клеток врожденного иммунитета, уже в полный рост будут принимать участие Т- и В-лимфоциты.

Обычно, такое случается при совпадении нескольких факторов: генетической предрасположенности, воздействий окружающей среды, изменения антигенного состава микробиоты пищеварительного тракта и нарушений толерантности иммунной системы к симбиотическим бактериям.

Синдромально такая комбинация проявляется воспалительными заболеваниями кишечника (ВЗК) . И вот тогда уже, врожденные лимфоидные клетки вместо того, чтобы поддерживать мир и кооперацию нашего организма с бактериями нормальной флоры, идут на них войной, вместе с другими иммунными клетками, в том числе и лимфоцитами системы приобретенного иммунитета.

Так как природа заболевания от этих сражений никуда не девается, то процесс принимает хронический характер. Когда разработчики лекарств придумывали моноклональные антитела против TNFα и интегриновых молекул, они еще не знали о том, какую роль в патогенезе ВКЗ играет новый класс лимфоцитов - ILC-клетки. Об их роли стало известно недавно, и сейчас идут исследования, которые принесут новые знания о регуляции и эффектах этих клеток. Тогда, вероятно, появятся новые лекарства.

Сейчас же очевидно, что создать препарат, который бы вмешался даже во все изученные патологические механизмы, невозможно - слишком уж они сложны, а пример с ILC-клетками, наглядно демонстрирует, насколько мы еще далеки от полного понимания механизмов, лежащих в основе заболеваний.

Пока у ученых, врачей и производителей лекарств нет никакого другого варианта, кроме, как подбирать наиболее универсальные и при этом наиболее специфические для заболевания мишени и пытаться действовать на них. При этом, всегда эффективность этих препаратов будет ограничена тремя факторами:

  1. невозможностью воздействовать на все механизмы сразу,
  2. нехваткой знаний о том, какие еще механизмы участвуют в заболевании и
  3. индивидуальными особенностями пациентов.

Однако, каждый новый препарат расширяет варианты выбора лечения, а принципы персонализованной медицины помогают подбирать препараты, наиболее подходящие для конкретного человека.

ILС-клетки, как мишень

По мере накопления знания об этом новом классе иммунных клеток, они наверняка превратятся в мишень для очередных таргетных препаратов. Уже сейчас в литературе обсуждаются варианты воздействия на их мембранные рецепторы. Так, например, показано, что Daclizumab , моноклональное антитело против CD25 (один из маркеров ILC) , меняет функции и количество этих клеток у пациентов с рассеянным склерозом.

Некоторые исследователи полагают, что популяция ILC-клеток может сама стать лекарством, если ученые научатся их перепрограммировать в условиях ex vivo, чтобы затем вновь ввести пациенту. Дело в том, что в одной из новых работ показано, что ILC-клетки презентируют Т-лимфоцитам пептидные фрагменты антигенов бактериального происхождения в комплексе с молекулами MHC II класса. Но, по причине того, что на мембране ILC-клеток нет ко-стимулирующих молекул, эта презентация носит толерогенный, а не активирующий характер. То есть ILC-клетки учат Т-лимфоциты «не трогать» симбиотическую флору.

В экспериментах на мышах, у которых был удален ген, кодирующий компонент молекулы MHC II в ILC3 клетках, было показано развитие процесса, напоминающего болезнь Крона. У этих животных было больше, чем обычно лимфоцитов, распознающих антигены бактерий нормальной флоры. Если удастся создать метод генетической модификации ILC-клеток пациентов так, чтобы усилить у них толерогенную функцию, то может появиться новый метод лечения пациентов с ВЗК.

Новые посты проще всего отслеживать по анонсам в наших пабликах

Врождённые лимфоидные клетки (ВЛК) это группа лимфоцитов которые вовлечены в быстрое цитокин-зависимое реагирование организма во время воспалительного процесса.
Они играют важную роль в гомеостазе органов тканей и в иммунном ответе организма на внешние раздражители а также регулируют процессы развития клеток приобретённого иммунитета.
В отличии от "обычных" лимфоцитов приобретённого иммунитета у ВЛК отсутствуют антиген-специфичные рецепторы, они могут реагировать на широкий спектрум воспалительных стимулов.

Как и Т-хелперы, ВЛК имеют общего предшественника охарактеризованного как клетка экспрессирующая транскрипторный фактор inhibitor of DNA binding 2 (ID2) .

На сегодняшний день выделяют три группы ВЛК в зависимости от их функции и экспрессии воспалительных медиаторов (Рисунок 1).

1-ая группа ВЛК делят множество характеристик с естественным киллерам (ЕК) (Natural killer, NK cells). Также как и ЕК, 1-тип ВЛК экспрессируют интерферон-γ и нуждаются в транскрипторном факторе Т-bet для своего развития, но в отличие от ЕК, они нe экспрессируют перфорин, гранзим В (granzyme B) и рецептор киллерных клеток (Killer-cell Ig-like receptor) и также активизируются в основном на интерлейкин-7 (ИЛ-7) чем ИЛ-15. Высокое содержание 1-го типа ВЛК были обнаружены в кишечнике пациентов страдающие болезнью Крона.

2-ая группа ВЛК имеют способность продуцировать ИЛ -13 , -5 и -9 . Впервые эта популяция клеток была описана в контексте анти-гельминтной реакции организма . Исследователи показали что 2-ой тип ВЛК стимулирует эозинофилию и гиперплазию бокаловидных клеток , два важных процесса в анти-глистном ответе организма. Также недавно, 2-ой тип ВЛК был обнаружен в лёгких и играет важную роль в патофизиологии астмы . Для дифференциации во 2-ой тип ВЛК необходима активация таких транскрипторных факторов как retinoic acid receptor–related orphan receptor (ROR ) α и Gata3 .

3-я группа ВЛК для своего развития также нуждаться в Gata3 и ROR-γt . Эта группа делится на 3 под-группы. 1) Клетки индуцирующие лимфоидную ткань (Lymphoid tissue inducer, LTi ) , они необходимы для лимфоидного органогенеза и продуцируют ИЛ -17 и -22 . 2) ИЛ-22 продуцирующие ВЛК (natural cytotoxicity receptor, NCR позитивные ) учавствуют в защите организма от внешних патогенов . 3) ИЛ-17 продуцирующие ВЛК (NCR негативные ) были обнаружены у пациентов страдающие язвенным колитом, также существуют исследования показывающие вовлечение этой группы клеток в прогрессии астмы и других аллергически-воспалительных процессах.

Рисунок 1

Что мы знаем....
ВЛК это новая популяция лимфоцитов, охарактеризованная относительно недавно.

ВЛК может продуцировать широкий спектрум цитокинов.

ВЛК реагирует в НЕ антиген зависимой манере.

ВЛК функционируют независимо от клеток приобретённого иммунитета но в тоже время влияют на приобретённый иммунитет.

Что не знаем.....
Как ВЛК взаимодействуют с клетками приобретённого иммунитета т.к. Т-хелперы.

Изначально ВЛК это очень малочисленная популяция клеток но в критических ситуациях (воспаление, защита от инфекционных патогенов),эта популяция клеток резко увеличивается. И остаётся неизвестным механизмы запускающие экспансию ВЛК.

Существуют ли дополнительные саб-группы ВЛК?

Литература:
Nature Reviews Immunology (2013) 13 , 75-87
Immunology and Cell Biology (2013) 91, 215–224
Curr Opin Immunol (2014) 27, 75–82