Главная · Сон · Химическое явление примеры. Физические и химические явления. Примеры химических явлений

Химическое явление примеры. Физические и химические явления. Примеры химических явлений

Ручаюсь, вы не раз замечали что-нибудь вроде того, как мамино серебряное кольцо со временем темнеет. Или как ржавеет гвоздь. Или как сгорают до золы деревянные поленья. Ну ладно, если мама не любит серебро, а в походы вы не никогда не ходили, уж как заваривается чайный пакетик в чашке видели точно.

Что общего у всех этих примеров? А то, что все они относятся к химическим явлениям.

Химическое явление происходит тогда, когда одни вещества превращаются в другие: у новых веществ другой состав и новые свойства. Если припомнить еще и физику, то запомните, что химические явления происходят на молекулярном и атомарном уровне, но не затрагивают состав ядер атомов.

С точки же зрения химии это не что иное, как химическая реакция. А для каждой химической реакции обязательно возможно выделить характерные признаки:

  • в ходе реакции может выпасть осадок;
  • может измениться цвет вещества;
  • следствием протекания реакции может стать выделение газа;
  • может быть выделена либо поглощена теплота;
  • также реакция может сопровождаться выделением света.

Также давно определен список необходимых для протекания химической реакции условий:

  • контакт: чтобы реагировать, вещества должны соприкасаться.
  • измельчение: для успешного протекания реакции, вступающие в нее вещества должны быть как можно мельче измельчены, идеальный вариант – растворены;
  • температура: очень многие реакции напрямую зависят от температуры веществ (чаще всего их требуется нагреть, но некоторые наоборот – охладить до определенной температуры).

Записывая буквами и цифрами уравнение химической реакции, вы тем самым описываете суть химического явления. А закон сохранения массы – одно и самых главных правил при составлении таких описаний.

Химические явления в природе

Вы, конечно, понимаете, что химия происходит не только в пробирках в школьной лаборатории. Самые впечатляющие химические явления вы можете наблюдать в природе. И значение их так велико, что не было бы никакой жизни на земле, если бы не некоторые из природных химических явлений.

Итак, первым делом поговорим про фотосинтез . Это процесс, во время которого растения поглощают углекислый газ из атмосферы и под воздействием солнечного света вырабатывают кислород. Этим кислородом мы и дышим.

Вообще фотосинтез протекает в две фазы, и освещение нужно только для одной. Ученые проводили различные опыты и выяснили, что фотосинтез протекает даже при слабом освещении. Но с увеличением количества света процесс значительно ускоряется. Также было замечено, что если одновременно увеличивать освещенность растения и повышать температуру, скорость фотосинтеза увеличивается еще больше. Происходит это до известного предела, по достижении которого дальнейшее увеличение освещенности перестает ускорять фотосинтез.

В процессе фотосинтеза задействованы фотоны, которые излучает солнце, и специальные пигментные молекулы растений – хлорофилл. В клетках растений он содержится в хлоропластах, именно благодаря которым листья зеленые.

С точки зрения химии при фотосинтезе происходит цепочка преобразований, результатом которой является кислород, вода и углеводы в качестве запаса энергии.

Первоначально считалось, что кислород образуется в результате расщепления углекислого газа. Однако позже Корнелиус Ван Ниль выяснил, что кислород образуется в результате фотолиза воды. Позднейшие исследования подтвердили эту гипотезу.

Описать суть фотосинтеза можно с помощью вот такого уравнения: 6СО 2 + 12Н 2 О + свет = С 6 Н 12 О 6 + 6О 2 + 6Н 2 О.

Дыхание , наше с вами в том числе, это тоже химическое явление. Мы вдыхаем выработанный растениями кислород, а выдыхаем углекислый газ.

Но не только углекислый газ образуется в результате дыхания. Главное в этом процессе то, что благодаря дыханию выделяется большое количество энергии, и этот способ ее получения очень эффективен.

Кроме того, промежуточным итогом разных этапов дыхания является большое число различных соединений. А те в свою очередь служат основой для синтеза аминокислот, белков, витаминов, жиров и жирных кислот.

Процесс дыхания сложный и разбит на несколько этапов. На каждом из которых в ход идет большое количество ферментов, выполняющих роль катализаторов. Схема химических реакций дыхания практически одинаковая у животных, растений и даже бактерий.

С точки зрения химии дыхание – это процесс окисления углеводов (как вариант: белков, жиров) с помощью кислорода, в результате реакции получаются вода, углекислый газ и энергия, которую клетки запасают в АТФ: С 6 Н 12 О 6 + 6О 2 = СО 2 + 6Н 2 О + 2,87 * 10 6 Дж.

Кстати, мы говорили выше, что химические реакции могут сопровождаться излучением света. В случае с дыханием и сопутствующими ему химическими реакциями это тоже верно. Светиться (люминесцировать) могут некоторые микроорганизмы. Хотя при этом энергетическая эффективность дыхания снижается.

Горение тоже происходит при участии кислорода. В результате древесина (и другое твердое топливо) превращается в золу, а это вещество с совершенно другим составом и свойствами. Кроме того, в процессе горения выделяется большое количество теплоты и света, а также газа.

Горят, конечно, не только твердые вещества, просто с их помощью было удобнее привести пример в данном случае.

С химической точки зрения горение – это окислительная реакция, которая протекает с очень большой скоростью. А при очень-очень высокой скорости реакции может произойти взрыв.

Схематически реакцию можно записать так: вещество + О 2 → оксиды + энергия.

Как природное химическое явление рассматриваем мы и гниение .

По сути, это тот же процесс, что и горение, только протекает он гораздо медленней. Гниение представляет собой взаимодействие сложных азотосодержащих веществ с кислородом при участии микроорганизмов. Наличие влаги является одним из факторов, способствующих возникновению гниения.

В результате химических реакций из белка образуется аммиак, жирные летучие кислоты, углекислота, оксикислоты, спирты, амины, скатол, индол, сероводород, меркаптаны. Часть из образованных в результате гниения азотосодержащих соединений ядовито.

Если снова обратимся к нашему списку признаков химической реакции, то многие из них обнаружим и в этом случае. В частности, имеется исходное вещество, реагент, продукты реакции. Из характерных признаков отметим выделение теплоты, газов (сильнопахнущих), изменение цвета.

Для круговорота веществ в природе гниение имеет очень большое значение: позволяет перерабатывать белки погибших организмов в соединения, пригодные к усвоению растениями. И круг начинается сначала.

Уверена, вы замечали, как летом легко дышится после грозы. И воздух тоже становится особенно свежим и приобретает характерный запах. Каждый раз после летней грозы вы можете наблюдать еще одно распространенное в природе химическое явление – образование озона.

Озон (О 3) в чистом виде представляет собой газ синего цвета. В природе наибольшая концентрация озона – в верхних слоях атмосферы. Там он выполняет роль щита нашей планеты. Который защищает ее от солнечной радиации из космоса и не дает Земле остывать, поскольку поглощает и ее инфракрасное излучение.

В природе озон в большинстве своем образуется благодаря облучению воздуха ультрафиолетовыми лучами Солнца (3О 2 + УФ свет → 2О 3). А также при электрических разрядах молний во время грозы.

В грозу под воздействием молний часть молекул кислорода распадается на атомы, молекулярный и атомарный кислород соединяются, и образуется О 3 .

Вот почему мы ощущаем особую свежесть после грозы, нам легче дышится, воздух кажется более прозрачным. Дело в том, что озон гораздо более сильный окислитель, чем кислород. И в небольшой концентрации (как после грозы) безопасен. И даже полезен, поскольку разлагает вредные вещества в воздухе. По сути, дезинфицирует его.

Однако в больших дозах озон очень опасен для людей, животных и даже растений, для них он ядовит.

Кстати, дезинфицирующие свойства полученного лабораторным путем озона широко используются для озонирования воды, предохранения продуктов от порчи, в медицине и косметологии.

Разумеется, это далеко не полный список удивительных химических явлений в природе, которые делают жизнь на планете такой разнообразной и прекрасной. Вы сможете узнать о них больше, если будете внимательно смотреть по сторонам и держать уши открытыми. Вокруг полно удивительных явлений, которые только и ждут, чтобы вы ими заинтересовались.

Химические явления в быту

К ним относятся те, что можно наблюдать в повседневной жизни современного человека. Некоторые из них совсем простые и очевидные, любой может наблюдать их на своей кухне: например, заваривание чая. Нагретые кипятком чаинки меняют свои свойства, в результате меняется и состав воды: она приобретает другой цвет, вкус и свойства. То есть получается новое вещество.

Если в этот же чай насыпать сахар, в результате химической реакции получится раствор, который снова будет обладать набором новых характеристик. В первую очередь, новым, сладким, вкусом.

На примере крепкой (концентрированной) чайной заварки можете самостоятельно провести и еще один опыт: осветлить чай при помощи дольки лимона. Из-за кислот, содержащихся в лимонном соке, жидкость еще раз изменит свой состав.

Какие еще явления вы можете наблюдать в быту? Например, к химическим явлениям относится процесс сгорания топлива в двигателе .

Если упростить, реакцию сгорания топлива в двигателе можно описать так: кислород + топливо = вода + углекислый газ.

Вообще в камере двигателя внутреннего сгорания происходит несколько реакций, в которых задействованы топливо (углеводороды), воздух и искра зажигания. А точнее, не просто топливо – топливно-воздушная смесь из углеводородов, кислорода, азота. Перед зажиганием смесь сжимается и нагревается.

Сгорание смеси происходит в доли секунды, в итоге связь между атомами водорода и углерода разрушается. Благодаря этому высвобождается большое количество энергии, которая приводит в движение поршень, а тот – коленчатый вал.

В дальнейшем атомы водорода и углерода соединяются с атомами кислорода, образуется вода и углекислый газ.

В идеале реакция полного сгорания топлива должна выглядеть так: C n H 2n+2 + (1,5 n +0,5) O 2 = nCO 2 + (n +1) H 2 O . В реальности же двигатели внутреннего сгорания не настолько эффективны. Предположим, если кислорода при реакции не хватает незначительно, в результате реакции образуется СО. А при большей нехватке кислорода образуется сажа (С).

Образование налета на металлах в результате окисления (ржавчина на железе, патина на меди, потемнение серебра) – тоже из категории бытовых химических явлений.

Возьмем железо для примера. Ржавление (окисление) происходит под воздействием влаги (влажность воздуха, прямой контакт с водой). Результатом этого процесса становится гидроксид железа Fe 2 O 3 (точнее, Fe 2 O 3 * H 2 O). Вы можете увидеть его в виде рыхлого, шероховатого, оранжевого или красно- коричневого налета на поверхности металлических изделий.

Другим примером может послужить зеленый налет (патина) на поверхности изделий из меди и бронзы. Он образуется со временем под воздействием атмосферного кислорода и влажности: 2Cu + O 2 + H 2 O + CO 2 = Cu 2 CO 5 H 2 (или CuCO 3 * Cu(OH) 2). Полученный в итоге основной карбонат меди встречается и в природе – в виде минерала малахита.

И еще один пример медленной окислительной реакции металла в бытовых условиях – это образование темного налета сульфида серебра Ag 2 S на поверхности серебряных изделий: украшений, столовых приборов и т.п.

«Ответственность» за его возникновение несут частички серы, которые в виде сероводорода присутствуют в воздухе, которым мы с вами дышим. Потемнеть серебро может и при контакте с серосодержащими пищевыми продуктами (яйцами, например). Реакция же выглядит так: 4Ag + 2H 2 S + O 2 = 2Ag 2 S + 2H 2 O.

Вернемся на кухню. Здесь можно рассмотреть еще несколько любопытных химических явлений: образование накипи в чайнике одно из них.

В бытовых условиях нет химически чистой воды, в ней всегда в различной концентрации растворены соли металлов и другие вещества. Если вода насыщена солями кальция и магния (гидрокарбонатами), ее называют жесткой. Чем выше концентрация солей, тем более жесткой является вода.

Когда такая вода нагревается, эти соли подвергаются разложению на углекислый газ и нерастворимый осадок (СаСО 3 и Mg СО 3). Эти твердые отложения вы и можете наблюдать, заглянув в чайник (а также взглянув на нагревательные элементы стиральных и посудомоечных машинок, утюгов).

Кроме кальция и магния (из которых получается карбонатная накипь), в воде также часто присутствует железо. В ходе химических реакций гидролиза и окисления из него образуются гидроксиды.

Кстати, собравшись избавиться от накипи в чайнике, вы можете наблюдать еще один пример занимательной химии в быту: с отложениями хорошо справляются обычный столовый уксус и лимонная кислота. Чайник с раствором уксуса/лимонной кислоты и воды кипятят, после чего накипь исчезает.

А без другого химического явления не было бы вкусных маминых пирогов и булочек: речь о гашении соды уксусом .

Когда мама гасит соду в ложке уксусом, происходит вот такая реакция: NaHCO 3 + C H 3 COOH = CH 3 COONa + H 2 O + CO 2 . Полученный в ее результате углекислый газ стремится покинуть тесто – и тем самым изменяет его структуру, делает пористым и рыхлым.

Кстати, можете рассказать маме, что гасить соду вовсе не обязательно – она и так прореагирует, когда тесто попадет в духовку. Реакция, правда, будет проходить немного хуже, чем при гашении соды. Но при температуре от 60 градусов (а лучше 200) происходит разложение соды на карбонат натрия, воду и все тот же углекислый газ. Правда, вкус готовых пирогов и булочек может оказаться хуже.

Список бытовых химических явлений не менее впечатляющий, чем список таких явлений в природе. Благодаря им у нас есть дороги (изготовление асфальта – это химические явление), дома (обжиг кирпича), красивые ткани для одежды (окрашивание). Если задуматься об этом, становится отчетливо ясно, насколько многогранная и интересная наука химия. И сколько пользы можно извлечь из понимания ее законов.

Среди многих и многих придуманных природой и человеком явлений есть особенные, которые сложно описать и объяснить. К ним относится и горение воды . Как такое, может быть, спросите вы, ведь вода не горит, ею тушат огонь? Как она может гореть? А дело вот в чем.

Горение воды – это химическое явление , при котором в воде с примесью солей под воздействием радиоволн разрываются кислородно-водородные связи. В результате образуется кислород и водород. И горит, конечно, не сама вода, а именно водород.

При этом он достигает очень высокой температуры горения (больше полутора тысяч градусов), плюс в ходе реакции снова образуется вода.

Это явление давно интересует ученых, мечтающих научиться использовать воду в качестве топлива. Например, для автомобилей. Пока это нечто из области фантастики, но кто знает, что ученые сумеют изобрести совсем скоро. Одна из главных загвоздок в том, чтобы при горении воды энергии выделялось больше, чем затрачивается на проведение реакции.

Кстати, нечто подобное можно наблюдать и в природе. Согласно одной из теорий, большие волны-одиночки, появляющиеся словно бы из ниоткуда, на самом деле являются следствием водородного взрыва. Электролиз воды, который к нему приводит, осуществляется благодаря попаданию электрических разрядов (молний) на поверхность соленой воды морей и океанов.

Но не только в воде, но и на суше можно наблюдать поражающие воображение химические явления. Если бы вам довелось побывать в природной пещере, наверняка вы смогли бы увидеть там причудливые, красивые природные «сосульки», свисающие с потолка – сталактиты. То, как и почему они появляются, объясняется еще одним интересным химическим явлением.

Химик, глядя на сталактит, видит, конечно, не сосульку, а карбонат кальция СаСО 3 . Основой для его образования служат сточные воды, природный известняк, а сам сталактит выстраивается благодаря осаждению карбоната кальция (рост вниз) и силе сцепления атомов в кристаллической решетке (рост вширь).

К слову, аналогичные образования могут подниматься от пола к потолку – их называют сталагмиты . А если сталактиты и сталагмиты встречаются и срастаются в цельные колонны, они получают название сталагнаты .

Заключение

В мире ежедневно происходит множество удивительных, прекрасных, а также опасных и пугающих химических явлений. Из многих человек научился извлекать пользу: создает строительные материалы, готовит пищу, заставляет транспорт перемещаться на огромные расстояния и многое другое.

Без многих химических явлений не было бы возможным существование жизни на земле: без озонового слоя люди, животные, растения не выжили бы из-за ультрафиолетовых лучей. Без фотосинтеза растений животным и людям нечем было бы дышать, а без химических реакций дыхания этот вопрос вообще не был бы актуальным.

Брожение позволяет готовить продукты питания, а сходное с ним химическое явление гниения разлагает белки на более простые соединения и возвращает те в круговорот веществ в природе.

Образование оксида при нагревании меди, сопровождающееся ярким свечением горение магния, плавление сахара и др. тоже считают химическими явлениями. И находят им полезное применение.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Физические изменения не связаны с химическими реакциями и созданием новых продуктов, например, таяние льда. Как правило, такие преобразования являются обратимыми. Кроме примеров физических явлений, в природе и в повседневной жизни встречаются также химические трансформации, при которых образуются новые продукты. Такие химические явления (примеры будут рассмотрены в статье) являются необратимыми.

Химические изменения

Химические изменения можно рассматривать как любое явление, которое позволяет ученым измерять химические свойства. Многие реакции также являются примерами химических явлений. Хотя не всегда легко сказать, что произошло именно химическое изменение, есть некоторые контрольные признаки. Что такое химические явления? Приведем примеры. Это может быть изменение цвета вещества, температуры, образование пузырьков или (в жидкостях) выпадение осадка. Можно привести следующие примеры химических явлений в жизни:

  1. Ржавчина на железе.
  2. Сжигание древесины.
  3. Метаболизм пищи в организме.
  4. Смешивание кислоты и щелочи.
  5. Приготовление яйца.
  6. Переваривание сахара амилазой в слюне.
  7. Смешивание в выпечке соды и уксуса для получения газообразного диоксида углерода.
  8. Выпекание пирога.
  9. Гальванизация металла.
  10. Батарейки.
  11. Взрыв фейерверков.
  12. Гниющие бананы.
  13. Образование молочно-кислых продуктов.

И это далеко не весь список. Можно рассмотреть некоторые из этих пунктов более подробно.

Наружный огонь с использованием дерева

Огонь - это тоже пример химического явления. Это быстрое окисление материала в экзотермическом химическом процессе горения, высвобождение тепла, света и различных продуктов реакции. Огонь является горячим, потому что происходит конверсия слабой двойной связи в молекулярном кислороде O 2 к более сильным связям в продуктах сгорания углекислого газа и воды. Выделяется большая энергия (418 кДж на 32 г O 2); энергии связи топлива играют лишь второстепенную роль здесь. В определенный момент реакции горения, называемой точкой воспламенения, образуются пламя.

Это видимая часть огня, которая состоит в основном из двуокиси углерода, водяного пара, кислорода и азота. Если температура достаточно высокая, газы могут стать ионизированными для получения плазмы. В зависимости от того, какие вещества загораются и какие примеси подаются снаружи, цвет пламени и интенсивность огня будут разными. Огонь в его наиболее распространенной форме может привести к пожару, который может нанести физический ущерб при горении. Огонь является важным процессом, который затрагивает экологические системы по всему миру. Положительные эффекты пожара включают стимулирующий рост и поддержание различных экологических систем.

Ржавчина

Так же, как и огонь, процесс ржавления является также окислительным процессом. Вот только не таким быстропротекающим. Ржавчина представляет собой оксид железа, обычно красный оксид, образованный окислительно-восстановительной реакцией железа и кислорода в присутствии воды или воздуха. Несколько форм ржавчины различаются как визуально, так и спектроскопией и формируются при разных обстоятельствах. Учитывая достаточное время, кислород и воду, всякая масса железа в конечном итоге полностью превращается в ржавчину и разлагается. Поверхностная ее часть является шелушащейся и рыхлой, и она не защищает подстилающее железо, в отличие от образования патины на медных поверхностях.

Такой пример химического явления, как ржавление, является общим термином для коррозии железа и его сплавов, таких как сталь. Многие другие металлы подвергаются аналогичной коррозии, но полученные оксиды обычно не называются ржавчиной. Существуют другие формы этой реакции как результат реакции между железом и хлоридом в среде, лишенной кислорода. Примером может служить арматура, используемая в подводных бетонных столбах, которая генерирует зеленую ржавчину.

Кристаллизация

Еще одним примером химического явления является кристаллический рост. Это процесс, в котором ранее существовавший кристалл становится больше по мере увеличения количества молекул или ионов в их положениях в кристаллической решетке. Кристалл определяется как атомы, молекулы или ионы, расположенные в упорядоченном повторяющемся образце, кристаллической решетке, распространяющейся во всех трех пространственных измерениях. Таким образом, рост кристаллов отличается от роста капли жидкости тем, что во время роста молекулы или ионы должны попадать в правильные положения решетки, чтобы упорядоченный кристалл мог расти.

Когда молекулы или ионы попадают в положение, отличное от положений в идеальной кристаллической решетке, образуются дефекты кристалла. Как правило, молекулы или ионы в кристаллической решетке улавливаются в том смысле, что они не могут двигаться от своих положений, и поэтому рост кристаллов часто необратим, так как когда молекулы или ионы встали на место в растущей решетке, они фиксируются в ней. Кристаллизация является обычным процессом как в промышленности, так и в естественном мире, и кристаллизация обычно понимается как состоящая из двух процессов. Если ранее не существовало кристалла, то новый кристалл должен зарождаться, а затем он должен подвергаться росту.

Химическое происхождение жизни

Химическое происхождение жизни относится к условиям, которые могли бы существовать и, следовательно, способствовали появлению первых дублируемых форм жизни.

Главным примером химических явлений в природе является сама жизнь. Считается, что совокупность физических и химических реакций смогла привести к появлению первых молекул, которые, репродуцируясь, привели к появлению жизни на планете.

Освоив эту тему, вы сможете:

Понимать суть физических и химических явлений, различать их;

Приводить примеры химических явлений, происходящих в природе и быту;

Наблюдать ход химических реакций по определенным признакам;

Проводить самостоятельно лабораторные опыты, характеризовать их ход, описывать наблюдения, делать выводы;

Формировать навыки и приобретать опыт в экспериментальном исследовании веществ и их свойств.

Вспомните из курса природоведения, что называют явлениями. Перечислите известные вам группы явлений.

Физические и химические явления (превращения). В мире, что нас окружает, происходят постоянные изменения. Как вам уже известно, их называют явлениями.

Изучение в курсе природоведения темы «Мир явлений, в котором живет человек» дало вам возможность шире познакомиться с физическими явлениями - механическими, звуковыми, тепловыми, световыми (рис. 46), магнитными и электрическими и некоторыми их характеристиками.

Приведите примеры вышеперечисленных физических явлений. Подумайте и дайте ответ на вопрос: происходит во время этих явлений разрушение одних веществ и образование других?

Очевидно, что нет. Итак, появление инея на деревьях во влажную, холодную пору, уменьшение содержания воды в водоемах в бездощову погоду и выпадение дождя - это явления, связанные с изменением агрегатного состояния воды вследствие изменения температурных условий в природе.

Рис. 46. Молния

Можно ли такие изменения с превращением воды наблюдать в быту? Как их осуществить?

Вы уже знаете, что иней, водяной пар, вода - это одно и то же вещество, в состав молекулы которой соответствует химическая формула Н 2 О.

При комнатной температуре йод - твердое, кристаллическое, темно-фиолетового цвета со слабым блеском вещество. В случае нагревания кристаллы йода сразу же превращаются в пар насыщенного фиолетового цвета, а охлаждаясь, пар снова кристаллизуется (минуя жидкое состояние). Эти преобразования тоже не связанные с изменением состава вещества: и в твердом, и в газообразном этапе молекулы йода состоит из двух атомов, что соответствует формуле И 2 .

Назовите известные вам из обихода стеклянные изделия.

Производство стеклянных изделий базируется на оказании им различной формы. Состав стекла остается неизменным. Способность некоторых веществ расширяться или сжиматься с изменением температур - это также физические изменения.

Вспомните, какие признаки являются проявлением физических свойств веществ.

Итак, до физических свойств, благодаря которым мы можем наблюдать физические явления, относятся: изменение формы, цвет, запах, вкус, блеск, плотность, электро - и теплопроводность, температуры плавления и кипения, пластичность и тому подобное. Их наличие не меняет состав вещества.

Однако химия изучает химические явления, во время которых разрушаются одни вещества и образуются другие. Например, известное вам из быта явление - горение природного газа, который состоит преимущественно из молекул органического вещества метана СН 4 (рис. 47). Этот процесс происходит при наличии газа кислорода.

Исследуем экспериментально, что же образуется в результате сгорания метана. Проведем демонстрационный опыт и выполним следующие действия.

1. Подержим несколько секунд над пламенем холодный предмет. На нем конденсируются капельки воды. Это означает, что в процессе сгорания метана образуется водяной пар (рис. 48).

Рис. 47. Горения природного газа

Рис. 48. Образование воды

2. Змочимо пробирку известковой водой (раствор извести в воде) и снова подержим некоторое время над пламенем згораючого метана. Стенки пробирки быстро мутнеют. Это признак наличия в продуктах горения углекислого газа.

Итак, в результате взаимодействия метана с кислородом образовалось два вещества: вода и углекислый газ. Иначе говоря, разрушились молекулы метана и кислорода и образовавшиеся молекулы воды и углекислого газа (рис. 49).

Рис. 49. Схема превращений во время горения метана:

а - молекула метана; б - две молекулы кислорода; в - атом Углерода; г - четыре атома Водорода; Г - четыре атома Кислорода; д - молекула углекислого газа; с - две молекулы воды

За нагрев порошка железа с серой образуется сложная кристаллическое вещество - феррум(II) сульфид, что проявляет совершенно иные свойства, чем исходные вещества (рис. 50).

Рис. 50. Схема образования феррум(II) сульфида: а - сера; 6 - железо; в - феррум(II) сульфид

Преобразования, при которых происходит разрушение одних веществ и образование других, называют химическими явлениями или химическими реакциями.

Для строительных нужд используют известь (химическое название кальций гидроксид, формула - Са(ОН) 2 . Чтобы его получить, надо провести две реакции: 1) разложение известняка СаСО 3 (кальций карбонат) с целью получения негашеной извести СаО (кальций оксид) и 2) сочетание кальций оксида с водой (как говорят, «погасить известь»).

Итак, мы видим, что во время протекания химических реакций всегда есть вещества, вступающие в реакцию, и вещества, образующиеся после реакции.

Вещества, вступающие в реакцию, называют исходными веществами, или реагентами, а те вещества, которые образуются после реакции, - продуктами или конечными веществами.

В двух вышеописанных реакциях, имеют большое практическое значение для человека, исходными веществами были: кальций карбонат - в первой, кальций оксид и вода - во второй. Продукты реакций - это кальций оксид и углекислый газ - в первой, кальций гидроксид - во второй. Зная химические формулы исходных веществ и продуктов, ход реакции можно изобразить схемами:

(2)

Стрелка вверх означает выделение газа.

Как вы думаете, физические явления и химические реакции происходят одновременно или взаимосвязано?

Явления, сопровождающие химические реакции. Наукой доказано, что каждая химическая реакция сопровождается одним или несколькими внешними проявлениями. Это дает возможность делать выводы о ходе реакций. Рассмотрим основные из них с помощью демонстрационных опытов.

Изменение окраски веществ

Опыт 1. Для выявления растворов щелочей применяют индикатор фенолфталеин - вещество, которое меняет окраску в щелочной среде. Если к раствору натрий гидроксида долить раствора фенолфталеина, последний изменит свою окраску на малиновую. Добавив к этой смеси соляной кислоты, наблюдать обесцвечивание. Это означает, что кислота нейтрализует щелочь. Ход реакции взаимодействия щелочи с кислотой можно записать так:

NаОH + Hcl → NaCl + Н 2 O (3)

Фенолфталеин был индикатором для выявления протекания реакции.

Опыт 2. Изменение окраски наблюдается при прокаливание медной пластинки в пламени (рис. 51). Медь, которая обычно имеет красный цвет, покрывается черным налетом. Этот налет - новообразованное вещество купрум(ІІ) оксид СиО. Схема реакции будет иметь такой вид:

Рис 51. Прокаливание медной пластины

(4)

Выпадение осадка или его растворение

Опыт 3. Нальем в химический стакан раствор ферум(ІІІ) хлорида. Этот раствор имеет желтую окраску. К нему добавим несколько капель раствора натрий гидроксида (щелочи). Будем наблюдать одновременно два явления - содержимое стакана становится бурым (следовательно, изменилось окраски), а впоследствии бура вещество оседает на дно - образовался осадок (рис. 52). Бура вещество - это новообразованный феррум(III) гидроксид. Схема реакции:

(5)

Стрелка вниз указывает на выпадение во время реакции осадка.

Рис 52. Образование осадка ферум(ІІІ) гидроксида

Опыт 4. Если к свіжодобутого осадка ферум(ІІІ) гидроксида доллємо соляной кислоты, то осадок растворяется с образованием растворимого в воде вещества желтого цвета - феррум(III) хлорида:

(6)

Какая еще признак проявятся во время растворения осадка?

Выделение газа

Некоторые химические превращения сопровождаются образованием (выделением) газа.

Опыт 5. В пробирку, в которую помещено цинковую пластинку, доллємо хлоридную кислоту. Сначала па пластинке образуются маленькие пузырьки (рис. 53), которые впоследствии отрываются от поверхности цинка и выделяются наружу. Это газ водород. Схема реакции:

Zn + НСl → ZnCl 2 + H 2 (7)

Чтобы убедиться, что во время реакции выделяется водород, осторожно зажжем газ. Он загорается на воздухе и горит голубым пламенем. Происходит реакция, представленная схемой:

Н 2 + O 2 → Н 2 O (8)

Рис 53. Образование пузырьков водорода на цинковой пластинке

Выделение тепла и света

Такие реакции известны человечеству со времен их использования. Это горение дров и других видов топлива. Они дали толчок к использованию обогрева помещений, изготовление факелов для освещения помещений, улиц и тому подобное.

Вспомните и назовите, какие вы знаете вещества, вступающие в реакции горения.

Опыт 6. Зажжем спичку или сухую лучину и будем наблюдать, что при этом происходит.

Объясните самостоятельно, какими явлениями сопровождается эта реакция.

Простейшей схемой реакции горения является горение углерода:

С + O 2 → CO 2 (9)

Тепло и свет выделяется не только во время сгорания простых веществ углерода, фосфора, магния, но и сложных. Например, природного газа, спирта.

Поглощение теплоты

Этим явлением сопровождаются все реакции, происходящие при нагревании (реакция меди с кислородом). Наглядным примером поглощения теплоты из окружающей среды с растворение аммоний хлорида NH 4 Cl в воде.

Опыт 7. Стакан с аммоний хлоридом поставим па мокрую подложку и доллємо воды, помешивая содержимое стеклянной палочкой. Во время растворения аммоний хлорид поглощает столько теплоты, что стакан примерзает к подставке (рис. 54).

Рис 54. Растворение аммоний хлорида в воде

Появление запаха

Это высшее ассоциируется с образованием душистых соединений. Например, появление своеобразного запаха свежести после грозы объясняется образованием в воздухе молекул озона О 3 . Реакция заключается в перегруппировке молекул кислорода в молекулы озона за высоких температур во время электрических разрядов. Схематически реакцию можно записать так:

О 2 → О 3 (10)

Опыт 8 (выполняют под тягой). Насыпьте на дно пробирки сухую соль - аммоний хлорид и долейте в нее раствор натрий гидроксида объемом 2-3 мл. Наблюдаются ли изменения? Какими явлениями сопровождается реакция?

Учитывая сказанное выше, приходим к выводу, что химические превращения сопровождаются определенными явлениями; они дают возможность наблюдать внешние проявления течения химических реакций.

Лабораторный опыт 3

Проведение химических реакций

Задача 1. Зажгите спичку, затем зажгите спиртовку. Что наблюдаете?

Задание 2. Положите в пробирку небольшой кусочек мела. Долейте уксуса так, чтобы он покрыл мел. Объясните свои наблюдения.

Задание 3. Налейте в пробирку голубой раствор купрум (ІІ) сульфата объемом 1,5-2 мл. Долейте раствора натрий гидроксида. Что наблюдаете? Произошла ли, на ваш взгляд, химическая реакция?

Задание 4. До осадка, образовавшегося в предыдущем опыте, долейте соляной кислоты. Объясните наблюдения. Обоснуйте их.

Обобщите свои знания о химические реакции.

Методы исследования в химии. В § 4 вы частично ознакомились с методами исследования. Химия как экспериментальная наука в своих исследованиях широко использует метод наблюдения и эксперимент, которые не исключают друг друга, а часто взаимодополняют. Расширим эти сведения.

Наблюдения рассматриваются в науке как целенаправленное, специально организованное восприятия предметов и явлений, обусловленное задачей деятельности. Особенность этого метода заключается в том, что он опирается на работу органов чувств является одним из способов пополнения знаний из окружающего мира. Изучая химию, вы уже убедились, что метод наблюдения применяется при демонстрации учителем объектов и явлений, моделей, схем, диаграмм, таблиц, а также выполнение лабораторных опытов и практических работ. Внешние проявления, сопровождающие химические реакции, в основном выявляют с помощью наблюдения.

Однако между наблюдением и экспериментом существуют различия. Не все явления природы можно наблюдать в пространстве и времени. Если исследуемый объект является недоступным для наблюдения, создают его модель. Такой метод называют моделированием.

Ставя эксперименты, ученые выясняют и устанавливают определенные закономерности.

Вспомните повторяемость свойств элементов в периодической системе.

На основе установленных закономерностей формулируются законы науки, которые подаются словесным или математическим выражением. Для проверки правильности законов ученые выдвигают определенные предположения (гипотезы), которые, в свою очередь, служат созданию теорий. Теория сочетает эксперимент, наблюдения и полученные с их помощью факты. Она же может стать основой для прогнозирования еще не известных науке явлений.

Поэтому, ведя наблюдение за демонстрациями учителя или осуществляя исследовательскую работу во время выполнения лабораторных опытов и практических работ, старайтесь как можно внимательнее наблюдать, связывать наблюдаемые явления с теоретическими выводами и формировать собственное научное видение и толкование всех процессов. Такой подход к изучению химии ставит перед вами очень много вопросов, ответы на которые вы сумеете найти самостоятельно. Где откроет возможность быть уверенными в своих убеждениях и убеждать в них других.

СУММИРУЕМ ИЗУЧЕННОЕ

Химические явления - это явления, во время которых разрушаются одни вещества и образуются другие. Химические явления называют химическими реакциями.

Химические явления сопровождаются определенными внешними проявлениями, по которым делают выводы о ходе реакций. Это: изменение окраски, выпадение осадка, выделение газа, появление запаха, выделение тепла и света.

Вещества, которые вступают в химические реакции, называют исходными или реагентами, а те, что образуются во время реакции, - продуктами или конечными веществами.

Изучение веществ и явлений осуществляется с помощью методов наблюдения, моделирования и эксперимента, на основе которых формируются законы и теории соответствующей науки.

ЗАДАНИЯ ДЛЯ КОНТРОЛЯ ЗНАНИЙ

1. Приведите примеры: а) физических; б) химических явлений, происходящих в природе и тех, что вы наблюдали в лабораторных условиях.

2. Перечислите явления, которые сопровождают химические превращения.

3. Вставьте пропущенные слова, чтобы выражение стало завершенным. Вещества, вступающие в реакцию, называют.... Продуктами реакций называют... , что образуются... реакции.

Химические превращения - это....

4. Классифицируйте явления на физические и химические: горение свечи, изготовление различных изделий из полиэтилена, почернение медной пластинки при нагревании, образование неприятного запаха вследствие протухання яиц, испарения раствора поваренной соли, горение магния, появление капель воды на окнах, скисание молока, разделение смеси порошков железа и серы магнитом, появление росы утром.

5. В схемах обозначьте исходные вещества и продукты реакций. Прочитайте схемы.

а) СО + О 2 -> СО 2 б) Си + O 2 -> СиО

в) Fe + O 2 -> Fe 3 О 4 г) Hg + S → HgS

6. Какие внешние изменения наблюдаются во время таких превращений: а) брожения яблочного сока; б) плавление сахара;

в) ржавления железных изделий; г) подгорание картофеля во время жарки?

7. Проанализируйте, как пополнились ваши знания о явлениях и какие взаимосвязи существуют между ними.

8. Охарактеризуйте методы исследования химии.

9. Объясните, в каких еще естественных науках используются известные вам методы исследования.

ИССЛЕДУЕМ ДОМА

Поместите на дно трех стаканов по 1/4 чайной ложки пищевой соды и долейте по очереди: в первую - сок квашеной капусты, во вторую - сок лимона или раствор лимонной кислоты, в третью - кефир. Что наблюдаете? Объясните наблюдаемые явления.

Подумай, ответь, выполни...

Явления Результат Признаки Примеры
Физические не происходит превращений одних веществ в другие изменение агрегатного состояния вещества
  • испарение воды
  • плавление льда
  • растворение соли в воде и выделение ее вновь из раствора
изменение формы предмета, который изготовлен из данного вещества
  • измельчение сахара в сахарную пудру
  • плавление стекла
  • плавление парафина
  • изготовление алюминиевой фольги из листового алюминия
Химические из данных веществ образуются новые вещества выделение теплоты, света
  • сгорание топлива
  • воспламенение спички
изменение окраски
  • отбеливание тканей отбеливателем
  • добавление лимона в чай
появление запаха
  • протухание яиц
  • разложение сахара
  • подгорание пищи
образование осадка
  • помутнение известковой воды
  • образование накипи в чайнике
выделение газа
  • гашение соды уксусной кислотой

Примеры явлений

Значение этих явлений в жизни и деятельности человека

1. Физические явления

1) испарение воды, конденсация водяных паров, выпадение дождя

круговорот воды в природе

2) придание определенной формы различным материалам в промышленном производстве

получение разнообразных предметов

2. Химические явления

1) биохимические процессы

протекают в организмах растений, животных, человека

2) сгорание топлива

получение тепловой энергии

3) ржавление железа

отрицательное значение - разрушение железных изделий

4) взаимодействие моющих средств с различными видами загрязнений

используется в быту

5) скисание молока

получение кисломолочных продуктов

Условия возникновения и течения химических реакций

1. Измельчение и перемешивание веществ:

а) чтобы началась химическая реакция, иногда достаточно соприкосновения реагирующих веществ (например, взаимодействие железа с влажным воздухом);

б) чем более измельчены вещества, тем больше поверхность соприкосновения их друг с другом, тем быстрее идет реакция между ними (например, кусок сахара трудно зажечь, а тонко измельченный и распыленный в воздухе сахар сгорает мгновенно, со взрывом);

в) облегчает проведение химических реакций между веществами их предварительное растворение.

2. Нагревание веществ до определенной температуры. Нагревание по-разному влияет на возникновение и течение химических реакций:

а) в одних случаях нагревание требуется лишь для возникновения реакции, а дальше реакция течет сама собой (например, горение дерева и других горючих веществ);

б) для других реакций требуется непрерывное нагревание, прекращается нагревание - прекращается и химическая реакция (например, разложение сахара).

1. К физическим явлениям не относится

1) замерзание воды

2) плавление алюминия

3) горение бензина

4) испарение воды

2. К химическим явлениям не относится

1) ржавление железа

2) подгорание пищи

3) горение бензина

4) испарение воды

1. Тесное соприкосновение реагирующих веществ (необходимо): H 2 SO 4 + Zn = ZnSO 4 + H 2 2. Нагревание (возможно) а) для начала реакции б) постоянно Классификация химических реакций по различным признакам 1.По наличию границы раздела фаз все химические реакции подразделяются на гомогенные и гетерогенные Химическая реакция, протекающая в пределах одной фазы, называется гомогенной химической реакцией . Химическая реакция, протекающая на границе раздела фаз, называется гетерогенной химической реакцией . В многостадийной химической реакции некоторые стадии могут быть гомогенными, а другие - гетерогенными. Такие реакции называются гомогенно-гетерогенными . В зависимости числа фаз, которые образуют исходные вещества и продукты реакции, химические процессы могут быть гомофазными (исходные вещества и продукты находятся в пределах одной фазы) и гетерофазными (исходные вещества и продукты образуют несколько фаз). Гомо- и гетерофазность реакции не связана с тем, является ли реакция гомо- или гетерогенной . Поэтому можно выделить четыре типа процессов: Гомогенные реакции (гомофазные) . В реакциях такого типа реакционная смесь является гомогенной, а реагенты и продукты принадлежат одной и той же фазе. Примером таких реакций могут служить реакции ионного обмена, например, нейтрализация раствора кислоты раствором щёлочи: Гетерогенные гомофазные реакции . Компоненты находятся в пределах одной фазы, однако реакция протекает на границе раздела фаз, например, на поверхности катализатора. Примером может быть гидрирование этилена на никелевом катализаторе: Гомогенные гетерофазные реакции . Реагенты и продукты в такой реакции существуют в пределах нескольких фаз, однако реакция протекает в одной фазе. Так может проходить окисление углеводородов в жидкой фазе газообразным кислородом. Гетерогенные гетерофазные реакции . В этом случае реагенты находятся в разном фазовом состоянии, продукты реакции также могут находиться в любом фазовом состоянии. Реакционный процесс протекает на границе раздела фаз. Примером может служить реакция солей угольной кислоты (карбонатов) с кислотами Бренстеда: 2.По изменению степеней окисления реагентов[править | править вики-текст] В данном случае различают Окислительно-восстановительные реакции, в которых атомы одного элемента (окислителя) восстанавливаются , то есть понижают свою степень окисления, а атомы другого элемента (восстановителя) окисляются , то есть повышают свою степень окисления. Частным случаем окислительно-восстановительных реакций являются реакции конпропорционирования, в которых окислителем и восстановителем являются атомы одного и того же элемента, находящиеся в разных степенях окисления. Пример окислительно-восстановительной реакции - горение водорода (восстановитель) в кислороде (окислитель) с образованием воды: Пример реакции конпропорционирования - реакция разложения нитрата аммония при нагревании. Окислителем в данном случае выступает азот (+5) нитрогруппы, а восстановителем - азот (-3) катиона аммония: Не относятся к окислительно-восстановительным реакции, в которых не происходит изменения степеней окисления атомов, например: 3.По тепловому эффекту реакции Все химические реакции сопровождаются выделением или поглощением энергии. При разрыве химических связей в реагентах выделяется энергия, которая в основном идёт на образование новых химических связей. В некоторых реакциях энергии этих процессов близки, и в таком случае общий тепловой эффект реакции приближается к нулю. В остальных случаях можно выделить: экзотермические реакции, которые идут с выделением тепла, (положительный тепловой эффект) СН 4 + 2О 2 = СО 2 + 2Н 2 О + энергия (свет, тепло); СаО + Н 2 О = Са(ОН) 2 + энергия (тепло). эндотермические реакции в ходе которых тепло поглощается (отрицательный тепловой эффект) из окружающей среды. Са(ОН) 2 + энергия (тепло) = СаО + Н 2 О Тепловой эффект реакции (энтальпию реакции, Δ r H), часто имеющий очень важное значение, можно вычислить по закону Гесса, если известны энтальпии образования реагентов и продуктов. Когда сумма энтальпий продуктов меньше суммы энтальпий реагентов (Δ r H < 0) наблюдается выделение тепла, в противном случае (Δ r H > 0) - поглощение. 4.По типу превращений реагирующих частиц[править | править вики-текст] соединения: разложения: замещения: обмена (в т.ч. тип реакции-нейтрализация): Химические реакции всегда сопровождаются физическими эффектами: поглощением или выделением энергии, изменением окраски реакционной смеси и др. Именно по этим физическим эффектам часто судят о протекании химических реакций. Реакция соединения -химическая реакция, в результате которой из двух или большего числа исходных веществ образуется только одно новое.В такие реакции могут вступать как простые, так и сложные вещества. Реакция разложения -химическая реакция, в результате которой из одного вещества образуется несколько новых веществ. В реакции данного типа вступают только сложные соединения, а их продуктами могут быть как сложные, так и простые вещества Реакция замещения -химическая реакция,в результате которой атомы одного элемента, входящие в состав простого вещества, замещают атомы другого элемента в его сложном соединении. Как следует из определения, в таких реакциях одно из исходных веществ должно быть простым, а другое сложным. Реакции обмена - реакция, в результате которой два сложных вещества обмениваются своими составными частями 5.По признаку направления протекания химические реакции делятся на необратимые и обратимые Необратимыми называют химические реакции, протекающие лишь в одном направлении("слева направо "), в результате чего исходные вещества превращаются в продукты реакции. О таких химических процессах говорят, что они протекают "до конца".К ним относят реакции горения , а также реакции, сопровождающиеся образованием малорастворимых или газообразных веществ Обратимыми называются химические реакции, протекающие одновременно в двух противоположных направлениях("слева направо" и "справа налево").В уравнениях таких реакций знак равенства заменяется двумя противоположно направленными стрелками.Среди двух одновременно протекающих реакций различают прямую(протекает "слева направо") и обратную (протекает "справа налево").Поскольку в ходе обратимой реакции исходные вещества одновременно и расходуются и образуются, они не полностью превращаются в продукты реакции.Поэтому об обратимых реакциях говорят, что они протекают "не до конца". В результате всегда образуется смесь исходных веществ и продуктов взаимодействия. 6. По признаку участия катализаторов химические реакции делятся на каталитические и некаталитические Каталитическими2SO 2 + O 2 → 2SO 3 (катализатор V 2 O 5) называют реакции, протекающие в присутствии катализаторов.В уравнениях таких реакций химическую формулу катализатора указывают над знаком равенства или обратимости, иногда вместе с обозначением условий протекания. К реакциям данного типа относятся многие реакции разложения и соединения. Некаталитическими2NO+O2=2NO 2 называются многие реакции, протекающие в отсутствие катализаторов.Это, например, реакции обмена и замещения.