Главная · Личностный рост · Основные свойства лития. Химические и физические свойства лития, его реакция с кислородом

Основные свойства лития. Химические и физические свойства лития, его реакция с кислородом

Литий (Li) -щелочной металл. В компактном состоянии серебристо-белого цвета. Получил название от греческого lithos (камень). Открыт шведским химиком А. Арфведсоном в 1817 г. в минерале петалите (алюмосиликата лития).

Металлический литий впервые выделен английским ученым Дэви в 1818 г. электролизом оксида лития. В 1885 г. в значительных количест­вах металлический литий получен независимо друг от друга Бунзеном (Германия) и Матиссеном (Англия) путем электролиза (электролитом служил хлорид лития).

Основные минералы, содержащие литнй н имеющие промышленное зна­чение: сподумен (6-7% Li 2 0); петалит (3,5-4,9% Li 2 0); амблиго-иит (8-10 % Li 2 0). Кроме того, к литийсодержащим минералам отно­сятся литиевые слюды - цинвальдит (3,0-3,5 % Li 2 0) и лепидолит (4-6 % Li 2 0). Литий содержится также в воде минеральных источни­ков, морской и озерной воде, в каменных углях, в живых организмах н растениях.

В промышленности металлический литий получают путем электроли­за расплавленного хлорида лития или смеси расплавленных хлорида лития и хлорида калия с применением графитированного анода и сталь­ного катода. Литий высокой чистоты (99,95%), почти свободный от примесей щелочных и щелочноземельных металлов, получают электро­лизом насыщенного раствора LiCl в пиридине, разложением соединения NH 3 Li в вакууме при 50-60 °С и восстановлением окиси лития алюми­нием в вакууме (-10- 1 Па) при 950-1000 °С.

Прн транспортировке лития тару следует предохранять от ме­ханических повреждений и попадания влаги, так как литий воспламеняется от воды. На складах литий следует хранить при темпе­ратуре не выше 240 °С и относительной влажности не более 85%. В складских помещениях должны быть средства пожаротушения и от­сутствовать водяные и паровые коммуникации. Для тушения горящего лития применяют порошкообразный технический хлористый калий (влажность порошка не более 1 %), сухой графитовый порошок, инерт­ный газ (аргои).

Работникам, имеющим дело с литием, необходимо соблюдать прави­ла техники безопасности, принятые в химической промышленности для работы со щелочными металлами. Работа с литием в атмосфере возду­ха относится к категории взрыво-, пожароопасных. При горении лития образуется густой дым его конденсатов и соединений. Температура са­мовоспламенения лития на воздухе 640 °С. Температура горения 1300 "С.

Литий не летуч и не дает ингаляционного поражения. Продукты сгорания лития относятся к классу чрезвычайно опасных соединений (1-й класс опасности). Оии обладают резким раздражающим действи­ем, вызывая поражения слизистых оболочек глаз и дыхательных путей, а также общетоксическим действием. Допустимая концентрация про­дуктов сгорания лития не должна превышать 0,02 мг/м 3 . Необходимо также принимать меры по защите окружающей среды (очистка сточ­ных вод и газовых выбросов от загрязнения литием).

При работе с расплавленным литием следует пользоваться маской С-40; для защиты органов дыхания в атмосфере аэрозолей лития и его соединений необходимо пользоваться респиратором типа «лепесток», органов зрения - герметичными защитными очками. В случае попада­ния расплавленного литня на кожу его удаляют сухим тампоном или тампоном, смоченным рыбьим жнром, а затем обильно обмывают пора­женное место водой и нейтрализуют 2-3 %-ным раствором борной кислоты, после чего накладывают сухую повязку. При попадании в гла­за литий немедленно удаляют ватным тампоном или хлопчатобумажной тканью, смоченной рыбьим жиром, а затем промывают глаза струей 1-2 %-иого раствора борной кислоты или чистой водой.

Физические свойства

Атомные характеристики. Атомный номер 3, атомная масса 6,941 а. е. м., атомный объем 13,1-Ю -6 м 3 /моль. Потенциалы ионизации атомов J (эВ): 5,39; 75,61; 122,42. Электроотрицательиость 0,97.

Из щелочных металлов Li обладает наименьшим атомным радиусом (0,157 нм), а следовательно, наибольшим ионизационным потенциалом У) = 5,39 эВ, поэтому литий химически менее активен по сравнению с другими щелочными металлами. Ионный радиус Li+ равен 0,068 нм. Благодаря малому атомному радиусу литий обладает наиболее проч­ной кристаллической решеткой по сравнению с остальными щелочными металлами. Это обусловливает наиболее высокие температуры плавле­ния и кипения лития по сравнению с его аналогами. При нормальной температуре литий имеет о.ц. к. решетку, период решетки 0,35023 им, координационное число 8, межатомное расстояние 0,30331 нм. Ниже -195 °С литий кристаллизуется в г. п. у. решетке с о=0,3111 нм и с=0,5093 им. Энергия кристаллической решетки 155,2 мкДж/кмоль.

Природный литий (эффективное поперечное сечение захвата тепло­вых нейтронов 67±2-10 -28 м 2) состоит из двух стабильных изотопов 6 Li (7,42 %) и 7 Li (92,58 %) Тяжелый изотоп 7 Li прозрачен для ней­тронов, имеет эффективное поперечное сечение захвата тепловых ней­тронов 0,033-Ю -28 м 2 ; e Li активно поглощает тепловые нейтроны; эф­фективное поперечное сечение захвата тепловых нейтронов 912-Ю -28 м 2 . Получены искусственные радиоактивные изотопы 8 Li и 9 Li. Период по­лураспада их соответственно 0,841 и 0,168 с.

Температурный коэффициент электрического сопротивления при 273-373 К а=4,50-10 _3 К -1 . Абсолютный коэффициент т. э. д. с. при 298 К е= + 12,2 мкВ/К. Постоянная Холла при комнатной температуре R = -2-Ю -10 м 3 /Кл. Удельная магнитная восприимчивость при 298 К Х=+2,04 -Ю- 9 .

Литий парамагнитен, соединения его диамагнитны. Наибольшее зна. ченис коэффициента вторичной электронной эмиссии о mах=0,5 при ус­коряющем напряжении первичных электронов 0,085 кэВ.

Литий взаимодействует со многими органическими соединениями и их галоидными производными. Ои бурно реагирует с разбавленными минеральными кислотами, а также с соляной и азотной; с концентриро­ванной азотной кислотой он реагирует медленно. Лнтий легко сплав­ляется почти со всеми металлами, за исключением железа. При повы­шенных температурах литий энергично вступает во взаимодействие с хлором, бромом, нодом, углеродом и др. Литий горит с образова­нием оксида. В сухом воздухе не загорается. При низкой температу­ре на воздухе корродирует (тускнеет-, в отдельных местах покрывается темно-коричневым налетом). Продукты коррозии лития могут вос­пламеняться при 200 °С, поэтому хранить литий следует только в гер­метично закрытых сосудах или в инертной среде. Литий быстро окисляется в атмосфере влажного воздуха. Если влажность воздуха не превышает 80 %, то литий медленно реагирует с азотом, образуя нит­рид LiN . В более влажном воздухе образуется гидроксид LiOH .

Кроме L 1 N , известны также нитрид лития Li 3 N , имид лития LiNH 3 , амнд лития LiNH 2 , азид лития LiN 3 , нитрид лития LiN 0 2 , нитрат ли­тия LiN 0 3 . Взаимодействие лития с водой происходит без плавления и самовозгорания с образованием гидроксида LiOH и выделением во­дорода. При непосредственном взаимодействии расплавленного лития с водородом образуется гидрид LiH . С кислородом литий образует оксид Li 2 0 и пероксид Li 2 0 2 . С сухнм кислородом при низкой темпе­ратуре не реагирует. При соединении лития с углеродом образуется карбид лития Li 2 C 2 , который представляет собой бесцветное хрупкое кристаллическое вещество плотностью 1 ,65 Мг/м 3 . Другое соединение лития с углеродом - карбонат лнтия Li 2 C0 3 .

Прн взаимодействии лития с хлором образуются соединения: хло­рид лития LiCl, гипохлорид лития LiCIO, хлорит лнтия LiC10 2 , перхло­рат лития LiC10 4 и хлорат лития LiC10 3 .

Непосредственное соединение брома и литня дает бромистый литий LiBr, который выделяется в виде белых кристаллов правильной фор­мы с различным содержанием кристаллизационной воды. Другие со­единения литня с бромом - гнпобромит лития LiBrO и бромит лития LiBr0 2 - образуются при добавке брома к раствору гидроксида лития.

Литий с фтором образует фторид лития LiF, который кристалли­зуется в виде белых мелких кристаллов правильной формы.

Известны три соединения лития с иодом - йодистый лнтий Lil, иодат лития LiI0 3 и периодит лития LiI0 4 .

Соединения лития с серой - сульфат лития Li 2 S0 4 и сульфид ли­тия Li 2 S. Безводный сульфат лития представляет собой мелкие белые призматические кристаллы, сульфид лития-кристаллы зеленовато, желтого цвета.

Известны соединения лития с кремнием в виде силикатов и силици­дов литий. Силикаты лития кристаллизуются в трех соединениях: орто-силикат лития Li 4 S0 4 , метасиликат лития Li 2 S0 3 и дисиликат лития Li 3 S 2 0s. Силициды лития: тетралитийсилицид Li 4 Si, трилитийсилицид Li 3 Si, дилитийсилицид Li 2 Si.

Сплавы системы литий - кремний представляют практический инте­рес как активные раскислнтели.

Соединения лития с фосфором: фосфид лития переменного состава LuPy, гипофосфит лития LiH 2 P0 2 , ортофосфат лития Li 3 P0 4 , моно-гидрофосфат лнтия Li 2 HP0 4 , дигидрофосфат лития LiH 2 P0 4 , пирофос-фат лития Li 4 P 2 0 7 , метафосфат лития LiP0 3 , гипофосфат лития Li 4 P 2 0 6 , двузамещенный LiHP0 3 и однозамещенный LiH 2 P0 3 фосфиты литня.

Соединения с селеном и теллуром: селенид Li 2 Se, представляющий собой красно-коричневое кристаллическое вещество, теллурид Li 2 Te - бесцветное кристаллическое вещество.

Имеются два соединения с мышьяком: трилитийарсенид Li 3 As - ве­щество коричневого цвета и монолитийарсенид LiAs.

Технологические свойства

Литий обладает очень высокой пластичностью и может легко дефор­мироваться при комнатной температуре прессованием, прокаткой и волочением. При этом не происходит упрочнения, так как температура рекристаллизации лития лежит ниже 20 "С. В холодном состоянии ли­тий легко режется ножом. Приращение объема при плавлении 1,5%. Давление истечения (при 15-20 °С) равно 17 МПа,

Области применения

Важнейшей областью применения лития и его соединений является ядерная энергетика (получение трития при бомбардировке изотопа 6 Li нейтронами).

Дейтерид лития используется в качестве твердого горючего в во­дородных бомбах, жидкий 7 Li - в качестве теплоносителя в ядерных реакторах. Ряд соединений лития применяют в военной технике, а также как топливо для ракет космических кораблей, управляемых снарядов подводных лодок, сверхскоростной авиации и т. д.

Широко применяются соединения лития прн получении керамики, эмали, специальных стекол, при сварке алюминиевых и магниевых спла­вов, в химической промышленности, в холодильной технике, в радио­электронике и т. д.

В металлургии литий, его соединения и литийсодержащие сплавы используют для раскисления, дегазации и десульфурации расплавов различных металлов и сплавов. Для этой цели обычно применяют 2 %-ные лигатуры с теми металлами, которые подвергаются раскисле­нию. Литиевые лигатуры (кремний - литий, алюминий - литий, маг­ний - литий, кальций - литий, железо - кремний - литий и др.) слу­жат присадками к углеродистым и специальным сталям, оказывая раскисляющее действие, повышая жидкотекучесть, механические и кор­розионные свойства сплавов.

Литий используют для повышения прочности и пластичности спла­вов, снижения их плотности, повышения коррозноиной стойкости. До­бавки лития к магнию позволяют получать сверхлегкие сплавы, плот­ность которых на 15-25 % ниже плотности стандартных магниевых сплавов. Легирование алюминия литием снижает плотность алюминие­вых сплавов иа 10-12 %.

Литий улучшает антифрикционные и механические свойства подшип­никовых сплавов, в частности в свннцовокальциевые баббиты вводят для этой цели 0,04 % Li . Литий улучшает литейные свойства чугуна. Некоторые соединения лития в последние годы находят применение в медицине.

Представлены физические свойства лития Li в твердом и жидком состояниях при различных температурах (в интервале от минус 223 до 1227°С). Рассмотрены следующие свойства лития: плотность ρ , удельная теплоемкость C p , кинематическая ν и динамическая μ вязкость, число Прандтля Pr , температуропроводность a и удельное сопротивление лития ρ .

Литий обладает наименьшей плотностью — плотность лития при температуре 27°С равна 536 кг/м 3 . Этот щелочной металл почти в два раза и имеет плотность даже ниже, чем у таких органических растворителей, как и . Плотность лития зависит от температуры — при нагревании литий расширяется и становится менее плотным. Необходимо отметить, что температура плавления лития составляет 180,7°С. При этой температуре плотность лития в расплавленном состоянии имеет величину 513,4 кг/м 3 .

Литий имеет наибольшую массовую удельную теплоемкость, по сравнению с , поскольку имеет наименьшую плотность. Удельная теплоемкость лития при обычных температурах имеет величину 3390 Дж/(кг·град). Теплоемкость твердого лития при нагревании увеличивается. При плавлении лития не происходит существенного изменения его удельной теплоемкости — теплоемкость жидкого лития слабо зависит от температуры.

Такое физическое свойство лития, как теплопроводность, имеет относительно среднюю величину в ряду — литий менее теплопроводный, чем натрий, однако имеет больший коэффициент теплопроводности, чем у калия. Теплопроводность лития при комнатной температуре составляет величину 85 Вт/(м·град). Теплопроводность лития в твердом состоянии снижается при нагревании и по достижении температуры плавления становится равной 42,8 Вт/(м·град). При последующем нагревании расплавленного лития его теплопроводность увеличивается.

Вязкость жидкого лития снижается при росте его температуры. Это справедливо, как для кинематической, так и для динамической вязкости этого металла. Например, нагрев расплава лития с 200 до 700°С приводит почти к двукратному снижению его вязкости — кинематическая вязкость уменьшается с 111·10 -8 до 61,7·10 -8 м 2 /с. Число Прандтля жидкого лития также снижается при нагревании.

Температуропроводность лития при комнатной температуре составляет около 45·10 -6 м 2 /с. Характерной особенностью твердого лития и других щелочных металлов является быстрое уменьшение температуропроводности с повышением температуры. Однако, температуропроводность лития в жидком состоянии увеличивается при нагревании.

Удельное электрическое сопротивление лития увеличивается при росте температуры во всем ее диапазоне. Это справедливо, как для твердого металла, так и для расплавленного.

Литий — металл с минимальной плотностью

Выполнила:

студентка 1 курса 2 лд группы

2 мед.факультета

Лебедь Екатерина

Запорожье 2014

1. Характеристика элемента

2. История открытия Лития

3. Получение Лития

4. Физические и химические свойства элемента

5. Важнейшие соединения лития.

6. Применение

7. Препараты Лития

Характеристика элемента

ЛИ́ТИЙ (лат. Lithium), Li, химический элемент с атомным номером 3, атомная масса 6,941. Химический символ Li читается так же, как и название самого элемента. Литий встречается в природе в виде двух стабильных нуклидов 6Li (7,52% по массе) и 7Li (92,48%). В периодической системе Д. И. Менделеева литий расположен во втором периоде, группе IA и принадлежит к числу щелочных металлов. Конфигурация электронной оболочки нейтрального атома лития 1s 22s 1. В соединениях литий всегда проявляет степень окисления +1. Металлический радиус атома лития 0,152 нм, радиус иона Li+ 0,078 нм. Энергии последовательной ионизации атома лития 5,39 и 75,6 эВ. Электроотрицательность по Полингу 0,98, самая большая у щелочных металлов. В виде простого вещества литий - мягкий, пластичный, легкий, серебристый металл.

История открытия Лития

Элемент №3 , названный литием (от греческого "литос" – камень), открыт в 1817 г. Когда когда проводил свои знаменитые опыты выдающийся английский ученый Хэмфри Дэви по электролизу щелочных земель, ещё не было известно о существовании в природе лития. Литиевая земля была открыта лишь в 1817 г. химиком-аналитиком Арфведсоном, шведом по национальности. В 1800 г. бразильский минералог де Андрада е Сильва, совершая научное путешествие по Европе, нашел в Швеции два новых минерала, названных им петалитом и сподуменом, который был вновь открыт на острове Уте. Арфведсон заинтересовался петалитом. После проведения полного качественного и количественного анализа, он обнаружил потерю около 4% вещества, это его конечно насторожило и дало повод для поиска недостающего вещества. Он повторил свои анализы более тщательно и щепетильно, он установил, что в петалите содержится "огнепостоянная щелочь до сих пор неизвестной природы". Берцелиус, учеником которого и был Арфведсон, предложил назвать ее литионом (Lithion), поскольку эта щелочь в отличие от кали и натра впервые была найдена в "царстве минералов" (камней); название зто произведено от греч.- камень. Арфведсон продолжал проводить исследования и обнаружил литиевую землю,или литину, и в некоторых других минералах. Но этот химический элемент ему выделить не удалось, он был очень активным и получить его было трудным делом. Небольшие массы металлического лития были получены Дэви и Бранде путем злектролиза щелочи. В 1855 г. Бунзен и Маттессен разработали промышленный способ получения металлического лития злектролизом хлорида лития. В русской химической литературе начала XIX в. встречаются названия: литион, литин (Двигубский, 1826) и литий (Гесс ); литиевую землю (щелочь) называли иногда литина.

Литий получают в две основные стадии:

1) получение чистого хлористого лития;

2) электролиз расплавленного хлористого лития.

Наиболее важной технической литиевой рудой является - алюмосиликат лития. Сподуменовую руду сначала обогащают, отделяя пустую породу от мине рала сподумена.

Один из способов получения хлористого лития из сподумена - хлорирующий обжиг сподумена в смеси с СаС03 и NH4Cl при 750° С. В результате получают спек, состоящий из хлористого лития, силиката кальция, окиси алюминия, а также хлоридов калия, натрия и кальция.

Спек выщелачивают холодной водой, при этом в раствор переходят хлориды лития, калия и натрия, а также небольшое количество СаС12 и Са(ОН)2. При помощи промышленных кондиционеров в помещении поддерживается необходимый уровень температуры. Кальций переводят в нерастворимое состояние, обрабатывая раствор поташом, отделяют осадок и чистый раствор упаривают до начала кристаллизации солей. Затем через раствор пропускают сухой хлористый водород, в результате чего резко уменьшается растворимость КСl и NaCl и они выпадают в осадок, который отделяют от раствора. Раствор выпаривают, и из него выкристаллизовывается гидрат LiCl Но, который затем обезвоживают нагреванием и далее используют как сырье для электролитического получения лития.

Существуют и другие способы разложения сподумена (спекание с сульфатом калия или смесью известняка с хлористым кальцием) с последующей переработкой спеков для получения из них хлорида лития.

Металлический литий получают электролизом хлористого лития при 400-500° С. В качестве электролита применяют смесь LiCl и КСl, содержащую примерно 60%. Анодное и катодное пространства разделены железной сетчатой диафрагмой. Над катодом расположен приемник для жидкого лития, всплывающего на поверхность электролита. Хлор удаляется через канал, устроенный в верхнем перекрытии электролизера. Через это же перекрытие проходят трубы для питания ванны расплавленным хлористым литием и извлечения жидкого металла.

Технологический режим и основные показатели электролиза: анодная плотность тока 2,1, катодная 1,4 а/см2; напряжение на клеммах 6-8 в, выход по току 90%. Расход на 1 кг лития: 6,2 кг LiCl, 0,1-0,2 кг KG, электроэнергии постоянного тока 144-216 кдж.

Литий-сырец содержит более 99% Li, основные примеси (Na, К, Mg, Al, Fe, Si) могут быть удалены рафинированием лития возгонкой, или дистилляцией в вакууме.

Запишем уравнения окисления лития и натрия избытком кислорода:

4Li + O 2 = 2Li 2 O (1);

2Na + O 2 = Na 2 O 2 (2).

Найдем суммарное количество вещества кислорода:

n(O 2) = V(O 2) / V m ;

n(O 2) = 3,92 / 22,4 = 0,175 моль.

Пусть на окисление лития было израсходовано х моль кислорода, тогда в реакции окисления натрия участвовало (0,175 — х) моль кислорода.

Обозначим количество вещества лития как «а», а натрия - «b», тогда, согласно записанным выше уравнениям реакции:

b = 2 ×(0,175 — х) = 0,35 - 2х.

Найдем массы лития и натрия (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел — Ar(Li) = 7 а.е.м.; Ar(Na) = 23а.е.м.):

m(Li) = 4х × 7 = 28х (г);

m(Na) = (0,35 - 2х)× 23 = 8,05 — 46х (г).

Учитывая, что масса смеси лития и натрия была равна 7,6 г можно записать уравнение:

28х + (8,05 — 46х) = 7,6;

(-18)× х = -(0,45);

Следовательно, количество вещества кислорода,израсходованное на окисление лития равно 0,025 моль, а натрия - (0,175 - 0,025) = 0,15 моль.

По уравнению (1) n(O 2) :n(Li 2 O) = 1: 2, т.е.

n(Li 2 O) = 2×n(O 2) = 2×0,025 = 0,05 моль.

Согласно уравнению (2) n(O 2) :n(Na 2 O 2) = 1: 1, т.е. n(Na 2 O 2)=n(O 2)= 0,15 моль.

Запишем уравнения реакции растворения продуктов окисления лития и натрия в серной кислоте:

Li 2 O + H 2 SO 4 = Li 2 SO 4 + H 2 O (3);

2Na 2 O 2 + 2H 2 SO 4 = 2Na 2 SO 4 + 2H 2 O + O 2 (4).

Рассчитаем массу серной кислоты в растворе:

m solute (H 2 SO 4) = m solution (H 2 SO 4) ×w(H 2 SO 4) / 100%;

m solute (H 2 SO 4) = 80 × 24,5 / 100% = 19,6 г.

Количество вещества серной кислоты будет равно (молярная масса - 98 г/моль):

n (H 2 SO 4) = m (H 2 SO 4) / M (H 2 SO 4);

n (H 2 SO 4) = 19,6 / 98 = 0,2моль.

Определим число молей продуктов реакций (3) и (4). Согласно уравнению (3) n(Li 2 O) :n(Li 2 SO 4) = 1: 1, т.е. n(Li 2 O) = n(Li 2 SO 4) = 0,05 моль. По уравнению (4) n(Na 2 O 2) :n(Na 2 SO 4) = 2: 2, т.е. n(Na 2 O 2) =n(Na 2 SO 4) = 0,15 моль.

Найдем массы образовавшихся сульфатов (М(Li 2 SO 4) = 110 г/моль; М(Na 2 SO 4) = 142 г/моль):

m(Li 2 SO 4) = 0,05 × 110 = 5,5 (г);

m(Na 2 SO 4) = 0,15 × 142 = 21,03 (г).

Чтобы рассчитать массовые доли полученных веществ, необходимо найти массу раствора. В него входят серная кислота, оксид лития и пероксид натрия. Необходимо учесть массу кислорода, который выделяется из реакционный смеси, в ходе реакции (4). Определим массы оксида лития и пероксида натрия (М(Li 2 O) = 30 г/моль, М(Na 2 O 2) = 78 г/моль):

m(Li 2 O) = 0,05 ×30 = 1,5 (г);

m(Na 2 O 2) = 0,15 ×78 = 11,7 (г).

Согласно уравнению (4) n(O 2) :n(Na 2 O 2) = 1: 2, т.е.

n(O 2) = ½ ×n(Na 2 O 2) = ½ × 0,15 = 0,075 моль.

Тогда масса кислорода будет равна (М(O 2) = 32 г/моль):

m(O 2) = 0,075 × 32 = 2,4 (г).

Для того, чтобы найти массу итогового раствора необходимо определить осталась ли в растворе серная кислота. Согласно уравнению (3) n(Li 2 O):n(H 2 SO 4) = 1: 1, т.е. n(H 2 SO 4) = n(Li 2 O) = 0,05 моль. По уравнению (4) n(Na 2 O 2) :n(H 2 SO 4) = 2: 2, т.е. n(H 2 SO 4) = n(Na 2 O 2) = 0,15 моль.Таким образом в реакцию вступило (0,05 + 0,15) = 0,2 моль серной кислоты, т.е. она прореагировала полностью.

Рассчитаем массу раствора:

m solution = m(Li 2 SO 4) + m(Na 2 SO 4) — m(O 2);

m solution = 5,5 + 21,03 — 2,4 = 24,13 г.

Тогда, массовые доли сульфатов натрия и лития в растворе будут равны:

w(Li 2 SO 4) = m(Li 2 SO 4) /m solution × 100%;

w(Li 2 SO 4) = 5,5 /24,13× 100% = 22,79%.

w(Na 2 SO 4) = m(Na 2 SO 4) /m solution × 100%;

w(Na 2 SO 4) = 21,03 / 24,13 × 100% = 87,15%.

Литий (лат. Lithium), Li, химический элемент I группы периодической системы Менделеева, атомный номер 3, атомная масса 6,941, относится к щелочным металлам. Природный Литий состоит из двух стабильных изотопов - 6 Li (7,42%) и 7 Li (92,58%). Литий был открыт в 1817 году шведским химиком А. Арфведсоном в минерале петалите; название от греч. lithos - камень. Металлический Литий впервые получен в 1818 году английским химиком Г. Дэви.

Распространение Лития в природе. Литий - типичный элемент земной коры (содержание 3,2·10 -3 % по массе), он накапливается в наиболее поздних продуктах дифференциации магмы - пегматитах. В мантии мало Лития - в ультраосновных породах всего 5·10 -5 % (в основных 1,5·10 -3 %, средних - 2·10 -3 %, кислых 4·10 -3 %). Близость ионных радиусов Li+, Fe 2+ и Mg 2+ позволяет Литию входить в решетки магнезиально-железистых силикатов - пироксенов и амфиболов. В гранитоидах он содержится в виде изоморфной примеси в слюдах. Только в пегматитах и в биосфере известно 28 самостоятельных минералов Лития (силикаты, фосфаты и другие). Все они редкие. В биосфере Литий мигрирует сравнительно слабо, роль его в живом веществе меньше, чем остальных щелочных металлов. Из вод он легко извлекается глинами, его относительно мало в Мировом океане (1,5·10 -5 %). Промышленные месторождения Лития связаны как с магматическими породами (пегматиты, пневматолиты), так и с биосферой (соленые озера).

Физические свойства Лития. Компактный Литий- серебристо-белый металл, быстро покрывающийся темно-серым налетом, состоящим из нитрида LiaN и оксида Li 2 O. При обычной температуре Литий кристаллизуется в кубической объемно-центрированной решетке, а = 3,5098 Å. Атомный радиус 1,57 Å, ионный радиус Li + 0,68 Å. Ниже -195 °С решетка Лития гексагональная плотноупакованная. Литий - самый легкий металл; плотность 0,534 г/см 3 (20 °С); t пл 180,5°С, t кип. 1317°С. Удельная теплоемкость (при 0-100 °С) 3,31·10 3 Дж/(кг·К), то есть 0,790 кал/(г·град); термический коэффициент линейного расширения 5,6·10 -5 . Удельное электрическое сопротивление (20 °С) 9,29·10 -4 ом·м (9,29 мком·см); температурный коэффициент электрического сопротивления (0-100 °С) 4,50·10 -3 . Литий парамагнитен. Металл весьма пластичен и вязок, хорошо обрабатывается прессованием и прокаткой, легко протягивается в проволоку. Твердость по Моосу 0,6 (тверже, чем Na и К), легко режется ножом. Давление истечения (15-20 °С) 17 Мн/м 2 (1,7 кгс/мм 2). Модуль упругости 5 Гн/м 2 (500 кгс/мм 2), предел прочности при растяжении 116 Мн/м 2 (11,8 кгс/мм 2), относительное удлинение 50-70% . Пары Лития окрашивают пламя в карминово-красный цвет.

Химические свойства Лития. Конфигурация внешней электронной оболочки атома Лития 2s 1 ; во всех известных соединениях он одновалентен. При взаимодействии с кислородом или при нагревании на воздухе (горит голубым пламенем) Литий образует оксид Li 2 О (пероксид Li 2 O 2 получается только косвенным путем). С водой реагирует менее энергично, чем другие щелочные металлы, при этом образуются гидрооксид LiOH и водород. Минеральные кислоты энергично растворяют Li (стоит первым в ряду напряжений, его нормальный электродный потенциал - 3,02 в).

Литий соединяется с галогенами (с иодом при нагревании), образуя галогениды (важнейший - хлорид лития). При нагревании с серой Литий дает сульфид Li 2 S, а с водородом - гидрид лития. С азотом Литий медленно реагирует уже при комнатной температуре, энергично - при 250 °С с образованием нитрида Li 2 N. С фосфором Литий непосредственно не взаимодействует, но в специальных условиях могут быть получены фосфиды. Нагревание Лития с углеродом приводит к получению карбида Li 2 C 2 , скремнием- силицида Лития. Бинарные соединения Литий - Li 2 О, LiH, Li 3 N, Li 2 C 2 , LiCl и другие, а также LiOH весьма реакционноспособны; при нагревании или плавлении они разрушают многие металлы, фарфор, кварц и другие материалы. Карбонат, фторид LiF, фосфат Li 3 PO 4 и другие соединения Лития по условиям образования и свойствам близки к соответствующим производным магния и кальция.

Литий образует многочисленные литийорганические соединения, что определяет его большую роль в органическом синтезе.

Литий - компонент многих сплавов. С некоторыми металлами (Mg, Zn, Al) он образует твердые растворы значительной концентрации, со многими - интерметаллиды (LiAg, LiHg, LiMg 2 , LiAl и мн. других). Последние часто весьма тверды и тугоплавки, незначительно изменяются на воздухе; некоторые из них - полупроводники. Изучено ряд бинарных и тройных систем с участием Лития; соответствующие им сплавы уже нашли применение в технике.

Получение Лития. Соединения Лития получаются в результате гидрометаллургической переработки концентратов - продуктов обогащения литиевых руд. Основной силикатный минерал - сподумен перерабатывают по известковому, сульфатному и сернокислотному методам. В основе первого - разложение сподумена известняком при 1150- 1200 °С:

Li 2 O·Al 2 O 3 ·4SiO 2 + 8CaCO 3 = Li 2 O·Al 2 O 3 + 4(2CaO· SiO 2) + 8CO 2

При выщелачивании спека водой в присутствии избытка извести алюминат Лития разлагается с образованием гидрооксида Лития:

Li 2 O·Al 2 O 3 + CaOH 2 = 2LiOH + CaO·Al 2 O 3

По сульфатному методу сподумен (и другие алюмосиликаты) спекают с сульфатом калия:

Li 2 O·Al 2 O 3 ·4SiO 2 + K 2 SO 4 = Li 2 SO 4 + K 2 O·Al 2 O 3 ·4SiO 2

Сульфат Лития растворяют в воде и из его раствора содой осаждают карбонат Лития:

Li 2 SO 4 +Na 2 CO 3 =Li 2 CO 3 + Na 2 SO 4 .

По сернокислотному методу также получают сначала раствор сульфата Лития, а затем карбонат Лития; сподумен разлагают серной кислотой при 250-300 °С (реакция применима только для β-модификации сподумена):

β-Li 2 O·Al 2 O 3 ·4SiO 2 + H 2 SO 4 = Li 2 SO 4 + H 2 O·Al 2 O 3 ·4SiO 2

Метод используется для переработки руд, необогащенных сподуменом, если содержание в них Li 2 O не менее 1%. Фосфатные минералы Лития легко разлагаются кислотами, однако по более новым методам их разлагают смесью гипса и извести при 950-1050 °С с последующей водной обработкой спеков и осаждением из растворов карбоната Лития.

Металлический Литий получают электролизом расплавленной смеси хлоридов Лития и калия при 400-460 °С (весовое соотношение компонентов 1:1). Электролизные ванны футеруются магнезитом, алундом, муллитом, тальком, графитом и других материалами, устойчивыми к расплавленному электролиту; анодом служат графитовые, а катодом - железные стержни. Черновой металлический Литий содержит механические включения и примеси (К, Mg, Ca, Аl, Si, Fe, но главным образом Na). Включения удаляются переплавкой, примеси - рафинированием при пониженном давлении. В настоящее время большое внимание уделяется металлотермическим методам получения Лития.

Применение Лития. Важнейшая область применения Лития - ядерная энергетика. Изотоп 6 Li - единственный промышленный источник для производства трития по реакции:

6 3 Li + 1 0 n = 3 1 H + 4 2 He

Сечения захвата тепловых нейтронов (σ) изотопами Лития резко различаются: 6 Li 945, 7 Li 0,033; для естественной смеси 67 (в барнах); это важно в связи с техническим применением Лития - при изготовлении регулирующих стержней в системе защиты реакторов. Жидкий Литий (в виде изотопа 7 Li) используется в качестве теплоносителя в урановых реакторах. Расплавленный 7 LiF применяется как растворитель соединений U и Th в гомогенных реакторах. Крупнейшим потребителем соединений Лития является силикатная промышленность, в которой используют минералы Лития, LiF, Li 2 CO 3 и многие специально получаемые соединения. В черной металлургии Литий, его соединения и сплавы широко применяют для раскисления, легирования и модифицирования многих марок сплавов. В цветной металлургии литием обрабатывают сплавы для получения хорошей структуры, пластичности и высокого предела прочности. Хорошо известны алюминиевые сплавы, содержащие всего 0,1% Лития,- аэрон и склерон; помимо легкости, они обладают высокой прочностью, пластичностью, стойкостью против коррозии и очень перспективны для авиастроения. Добавка 0,04% Лития к свинцово-кальциевым подшипниковым сплавам повышает их твердость и понижает трение. Соединения Лития используются для получения пластичных смазок. По значимости в современной технике Литий- один из важнейших редких элементов.

Литий в организме. Литий постоянно входит в состав живых организмов, однако его биологическая роль выяснена недостаточно. Установлено, что у растений Литий повышает устойчивость к болезням, усиливает фотохимическую активность хлоропластов в листьях (томаты) и синтез никотина (табак). Способность концентрировать Литий сильнее всего выражена среди морских организмов у красных и бурых водорослей, а среди наземных растений - у представителей семейства Ranunculaceae (василистник, лютик) и семейства Solanaceae (дереза). У животных Литий концентрируется главным образом в печени и легких.