Главная · Спорт и Фитнес · Почему состав крови является относительно постоянным. Общие свойства и функции крови. Плазма крови: состав и свойства

Почему состав крови является относительно постоянным. Общие свойства и функции крови. Плазма крови: состав и свойства

Кровь - уникальная биожидкость, обеспечивающая органы и ткани кислородом и питательными веществами. В организме она выполняет разнообразные функции. Форменные элементы крови участвуют в регуляции метаболических процессов, защите организма от инфекций. Благодаря лабораторному анализу можно диагностировать большинство заболеваний.

Морфологический и биохимический состав крови: плазма, форменные элементы

Эритроциты - это, пожалуй, самые многочисленные по своему количеству клеточные элементы крови. Не стоит забывать, что форменные элементы и плазма крови - единое целое, играющее важную роль в процессе диагностирования разных заболеваний. Ниже приведем данные о морфологическом составе этой жидкости взрослых и детей.

Эритроциты - носители гемоглобина. Стоит отметить, что именно этот белок (хромопротеид) обеспечивает организм кислородом, переносит СО 2 из тканей в легкие, регулирует рН крови.

Ниже представлена еще одна таблица. Форменные элементы крови у детей имеют немного другие нормы, которые в ней и указаны.

Эритроциты: характеристика и предназначение

Форменные элементы крови (эритроциты) синтезируются в костном мозге. Начальным элементом является эритропоэтинчувствительная клетка. В процессе дифференциации она переходит в эритробласт, пронормобласт, нормобласт, ретикулоцит и эритроцит. В периферической крови находятся лишь зрелые эритроциты, но при патологии могут обнаруживаться и ядерные нормоциты (нормобласты). Жизненный цикл для эритроцитов составляет от 110 до 130 дней, далее они гемолизируются в фагоцитирующих макрофагах паренхиматозных органов (легкие, печень, лимфоузлы, селезенка). За этот период указанные форменные элементы крови совершают около 300000 оборотов в сосудистом русле. За сутки гемолизируется приблизительно 1% красных кровяных телец.

Как указывалось выше, основным белком эритроцитов является гемоглобин. Каждый эритроцит содержит около 280 миллионов молекул гемоглобина. Приблизительно 97 % этого белка сконцентрировано внутри клеток. Благодаря наличию гемоглобина, эритроциты (форменные элементы крови) значительно быстрее насыщаются кислородом по сравнению с плазмой. Основная часть гемоглобина синтезируется в костном мозге. Следует отметить, что гем и глобин синтезируются отдельно друг от друга.

Количественное изменение эритроцитов и интерпретация результатов

Количество клеток крови зависит от множества факторов. Снижение концентрации эритроцитов называют эритроцитопенией или олигоцитемией. Эта патология встречается на фоне развития анемий, кровопотерь, интоксикаций, микроэлементозов и авитаминозов.

Эритроцитоз, или полицитемия, характеризуется увлечением количества красных кровяных клеток. Медики различают два вида полицитемии: физиологическую и патологическую. Физиологический эритроцитоз наблюдается у новорожденных малышей, а также в условиях высокогорья. В последнем случае увеличение концентрации эритроцитов обусловлено поступлением в циркулирующую кровь клеток с депо и активацией эритропоэза. Усиленное образование эритроцитов при снижении парциального давления - защитная реакция организма.

Патологический эритроцитоз может быть относительным и абсолютным. Относительная полицитемия наблюдается при потере организмом воды и сгущении крови вследствие разных заболеваний, сопровождающихся рвотой и диареей. Патологическая, абсолютная полицитемия наблюдается на фоне развития заболеваний дыхательной системы (пневмония, пневмосклероз, эмфизема легких).

Функции и классификация белых кровяных клеток

Форменные элементы крови лейкоциты - белые, точнее, бесцветные тельца. Различают два класса этих частиц: гранулоциты (эозинофилы, базофилы, нейтрофилы) и агранулоциты (моноциты, лимфоциты). Гранулоциты синтезируются в красном костном мозге, в то время как агранулоциты - в селезенке и лимфоузлах. Форменные элементы крови человека, называемые лимфоцитами, в кровеносном русле находятся от 2 до 10 часов, далее мигрируют в другие ткани, превращаются в макрофаги и принимают участие в регуляции клеточного иммунитета.

Характеристика гранулоцитов

Эозинофилы синтезируются в красном костном мозге, но основные свои функции выполняют в других тканях. Указанные форменные элементы крови принимают участие в аллергических реакциях - адсорбируют гистамин, который выделяется при аллергии, инактивируют его. Эозинофилы выполняют еще и антитоксическую функцию - они адсорбируют токсины белковой природы и разрушают их, а в зонах воспаления фагоцитируют бактерии, иммунные комплексы, продукты распада тканей, хотя фагоцитирующая активность у них гораздо ниже, по сравнению с нейтрофилами.

Нейтрофилы

Эти форменные элементы крови образуются в костном мозге. Они участвуют в защите организма от инфекционно-токсического влияния: фагоцитируют и переваривают микроорганизмы, синтезируют ферменты, которые проявляют бактерицидное действие.

Базофилы

Эти клетки принимают участие в аллергических реакциях, поскольку они удерживают половину присутствующего в крови гистамина, а концентрация его в базофилах в 1 млн раз выше, по сравнению с плазмой крови. Базофилы влияют на функцию оседания: в них содержатся факторы, ускоряющие этот процесс, а также те, которые предупреждают свертывание (гепарин) крови.

Моноциты

Представленные форменные элементы крови синтезируются в костном мозге. В кровеносном русле циркулируют около 4 суток, после чего мигрируют в ткани, где созревают и функционируют как макрофаги. Существуют данные, что эти клетки сохранили способность к рециклизации. Макрофаги заселяют соединительную ткань, находятся в легких, печени, селезенке, лимфоузлах, костном мозге, коже, нервной ткани.

Лимфоциты

Продукция, дифференциация и функционирование лимфоцитов осуществляются в лимфоидных органах (лимфоузлы, костный мозг, селезенка). Часть полипотентных стволовых клеток из костного мозга мигрируют в тимус, где и дифференцируются в Т-лимфоциты, далее они направляются в тимусзависимые лимфоидные органы и формируют Т-клеточную популяцию, которая в основном отвечает за клеточный иммунитет.

Популяция Т-лимфоцитов включает: эффекторы клеточного иммунитета (Т-киллеры), ответственные за клеточную резистентность против инфекций; клетки-помощники (хелперы), клетки-супрессоры, которые угнетают В-клеточный гуморальный иммунный ответ.

Изменение состава лейкоцитов и его интерпретация

Увеличение концентрации лейкоцитов в крови называется лейкоцитозом, а уменьшение - лейкопенией. Лейкоцитоз может быть физиологическим, патологическим и медикаментозным. К физиологическим относят:

  • миогенный (регистрируется при наличии интенсивных мышечных нагрузках);
  • пищеварительный (наблюдается через пару часов после употребления пищи);
  • лейкоцитоз беременных и новорожденных.

Медикаментозный лейкоцитоз возникает вследствие парентерального введения в организм белковых препаратов, адреналина, сывороток, вакцин, кортикостероидов. Патологический - спутник большинства заболеваний (плеврит, пневмония, перикардит, гастроэнтерит, перитонит, артрит и т. д.).

Лейкопения - всегда патологическое явление, часто встречается при очень тяжелых инфекционных и токсических состояниях: вирусные заболевания, дистрофия, брюшной тиф, анафилаксия, голодание, прием некоторых медикаментов (препарат "Бутадион", иммунодепрессанты, средство "Левомицетин", сульфаниламиды, цитостатики).

Тромбоциты

Если вас попросят: «Назовите форменные элементы крови», то следует описать значение и функции тромбоцитов. Эти клетки активируют процесс свертывания крови, а также выполняют некоторые защитные реакции. На их поверхности адсорбируются плазменные факторы коагуляции и другие биоактивные соединения (например, серотонин, гистамин), способствующие свертыванию крови и уменьшению кровотечения. Указанные форменные элементы крови синтезируются в костном мозге. Средняя продолжительность жизни - 8-11 суток.

При нарушении целостности кровеносных сосудов происходит агрегация и агглютинация кровяных пластинок, образуется осадок, вокруг которого выпадают нити фибрина, оседают форменные элементы крови лейкоциты, тромбоциты и эритроциты. Кровяные пластинки богаты белками, липидами, содержат также фосфолипиды, холестерин, гликоген.

Кровь - внутренняя среда организма, обеспечивающая гомеостаз, наиболее рано и чутко реагирует на повреждение тканей. Кровь - зеркало гомеостаза и исследование крови обязательно для любого больного, показатели сдвигов крови обладают наибольшей информативностью и играют большую роль в диагностике и прогнозе течения заболеваний.

Распределение крови :

50 % в органах брюшной полости и таза;

25 % в органах грудной полости;

25 % на периферии.

2/3 в венозных сосудах, 1/3 - в артериальных.

Функции крови

1. Транспортная – перенос кислорода и питательных веществ к органам и тканям и продуктов обмена к органам выделения.

2. Регуляторная – обеспечение гуморальной и гормональной регуляции функций различных систем и тканей.

3. Гомеостатическая – поддержание температуры тела, кислотно-щелочного равновесия, водно-солевого обмена, тканевого гомеостаза, регенерации тканей.

4. Секреторная – образование клетками крови БАВ.

5. Защитная - обеспечение иммунных реакций, кровяного и тканевого барьеров против инфекции.

Свойства крови .

1. Относительное постоянство объема циркулирующей крови .

Общее количество крови зависит от массы тела и в организме взрослого человека в норме составляет 6–8%, т.е. примерно 1/130 массы тела, что при массе тела 60–70 кг составляет 5–6 л . У новорожденного – 155% от массы.

При заболеваниях объем крови может увеличиваться – гиперволемия или уменьшаться – гиповолемия. При этом соотношение форменных элементов и плазмы может сохраняться или изменяться.

Потеря 25–30% крови опасна для жизни. Смертельна – 50%.

2. Вязкость крови .

Вязкость крови обусловлена наличием белков и форменных элементов,особенно эритроцитов, которые при движении преодолевают силы внешнего и внутреннего трения. Данный показатель увеличивается при сгущении крови, т.е. потере воды и возрастании количества эритроцитов. Вязкость плазмы крови равна 1,7–2,2, а цельной крови – около 5 усл. ед. по отношению к воде. Относительная плотность (удельный вес) цельной крови колеблется в пределах 1,050-1,060.

3. Суспензионное свойство .

Кровь является суспензией, в которой форменные элементы находятся во взвешенном состоянии.

Факторы, обеспечивающие это свойство:

Количество форменных элементов, чем их больше, тем больше выражены суспензионные свойства крови;

Вязкость крови - чем больше вязкость, тем больше суспензионные свойства.

Показатель суспензионного свойства - скорость оседания эритроцитов (СОЭ). Средняя скорость оседания эритроцитов (СОЭ ) у мужчин 4–9 мм/час, у женщин – 8–10 мм/час.

4. Электролитные свойства.

Это свойство обеспечивает определенную величину осмотического давления крови за счет содержания ионов. Осмотическое давление – довольно постоянный показатель, несмотря на небольшие его колебания вследствие перехода из плазмы в ткани крупномолекулярных веществ (аминокислот, жиров, углеводов) и поступление из тканей в кровь низкомолекулярных продуктов клеточного метаболизма.

5. Относительное постоянство кислотно-щелочного состава крови (рН) (кислотно-основное равновесие).

Постоянство реакции крови, определяется концентрацией ионов водорода. Постоянство рН внутренней среды организма обусловлено совместным действием буферных систем и ряда физиологических механизмов. К последним относятся дыхательная деятельность легких и выделительная функция почек.

Важнейшими буферными системами крови являются бикарбонатная, фосфатная, белковая и наиболее мощная гемоглобиновая . Буферная система представляет собой сопряженную кислотно-основную пару, состоящую из акцептора и донора водородных ионов (протонов).

Кровь имеет слабощелочную реакцию. Установлено, что состоянию нормы соответствует определенный диапазон колебаний рН крови – от 7,37 до 7,44 со средней величиной 7,40, рН артериальной крови равен 7,4; а венозной, вследствие большого содержания в ней углекислоты, – 7,35.

Алкало́з - увеличение рН крови (и других тканях организма) за счёт накопления щелочных веществ.

Ацидоз - уменьшение рН крови в результате недостаточного выведения и окисления органических кислот (их накопления в организме).

6. Коллоидные свойства.

Заключаются в способности белков удерживать воду в сосудистом русле – этим свойством обладают гидрофильные мелкодисперсные белки.

Состав крови .

1. Плазма (жидкое межклеточное вещество) 55-60 %;

2. Форменные элементы (находящиеся в ней клетки) – 40-45 %.

Плазма крови представляет собой жидкость, остающуюся после удаления из нее форменных элементов.

Плазма крови содержит 90–92% воды и 8–10% сухого вещества. В ней находятся отличающиеся по своим свойствам и функциональному значению белковые вещества: альбумины (4,5%), глобулины (2–3%) и фибриноген (0,2–0,4%), а также 0,9 % солей, 0,1 % глюкозы. Общее количество белков в плазме крови человека составляет 7–8%. Плазма крови содержит также ферменты, гормоны, витамины и другие необходимые организму вещества.

Рисунок – Клетки крови:

1 - базофильный гранулоцит; 2 - ацидофильный гранулоцит; 3 - сегментоядерный нейтрофильный гранулоцит; 4 - эритроцит; 5 - моноцит; 6 - тромбоциты; 7 - лимфоцит

Резкое уменьшение количества глюкозы в крови (до 2,22 ммоль/л) приводит к повышению возбудимости клеток мозга, появлению судорог. Дальнейшее снижение содержания глюкозы в крови ведет к нарушению дыхания, кровообращения, потере сознания и даже к смерти человека.

Минеральными веществами плазмы крови являются NaCl, KCI,CaCl NaHCO 2 , NaH 2 PO 4 и другие соли, а также ионы Nа + , Ca 2+ , К + и др. Постоянство ионного состава крови обеспечивает устойчивость осмотического давления и сохранение объема жидкости в крови и клетках организма. Кровотечения и потеря солей опасны для организма, для клеток.

К форменным элементам (клеткам) крови относятся: эритроциты, лейкоциты, тромбоциты.

Гематокрит – часть объема крови, приходящаяся на долю форменных элементов.

Определение понятия системы крови

Система крови (по Г.Ф. Лангу, 1939) — совокупность собственно крови, органов кроветворения, кроверазрушения (красный костный мозг, тимус, селезенка, лимфатические узлы) и нейрогуморальных механизмов регуляции, благодаря которым сохраняются постоянство состава и функции крови.

В настоящее время систему крови функционально дополняют органами синтеза белков плазмы (печень), доставки в кровоток и выведения воды и электролитов (кишечник, ночки). Важнейшими особенностями крови как функциональной системы являются следующие:

  • она может выполнять свои функции, только находясь в жидком агрегатном состоянии и в постоянном движении (по кровеносным сосудам и полостям сердца);
  • все ее составные части образуются за пределами сосудистого русла;
  • она объединяет работу многих физиологических систем организма.

Состав и количество крови в организме

Кровь — это жидкая соединительная ткань, которая состоит из жидкой части - и взвешенных в ней клеток - : (красных клеток крови), (белых клеток крови), (кровяных пластинок). У взрослого человека форменные элементы крови составляют около 40-48%, а плазма — 52-60%. Это соотношение получило название гематокритного числа (от греч.haima - кровь,kritos - показатель). Состав крови приведен на рис. 1.

Рис. 1. Состав крови

Общее количество крови (сколько крови) в организме взрослого человека в норме составляет 6-8% массы тела, т.е. примерно 5-6 л.

Физико-химические свойства крови и плазмы

Сколько крови в организме человека?

На долю крови у взрослого человека приходится 6-8% массы тела, что соответствует приблизительно 4,5-6,0 л (при средней массе 70 кг). У детей и у спортсменов объем крови в 1,5-2,0 раза больше. У новорожденных он составляет 15% от массы тела, у детей 1-го года жизни — 11%. У человека в условиях физиологического покоя не вся кровь активно циркулирует по сердечно-сосудистой системе. Часть ее находится в кровяных депо — венулах и венах печени, селезенки, легких, кожи, скорость кровотока в которых значительно снижена. Общее количество крови в организме сохраняется на относительно постоянном уровне. Быстрая потеря 30-50% крови может привести организм к гибели. В этих случаях необходимо срочное переливание препаратов крови или кровезамещающих растворов.

Вязкость крови обусловлена наличием в ней форменных элементов, прежде всего эритроцитов, белков и липопротеинов. Если вязкость воды принять за 1, то вязкость цельной крови здорового человека составит около 4,5 (3,5-5,4), а плазмы — около 2,2 (1,9-2,6). Относительная плотность (удельный вес) крови зависит в основном от количества эритроцитов и содержания белков в плазме. У здорового взрослого человека относительная плотность цельной крови составляет 1,050- 1,060 кг/л, эритроцитарной массы — 1,080-1,090 кг/л, плазмы крови — 1,029-1,034 кг/л. У мужчин она несколько больше, чем у женщин. Самая высокая относительная плотность цельной крови (1,060-1,080 кг/л) отмечается у новорожденных. Эти различия объясняются разницей в количестве эритроцитов в крови людей разного пола и возраста.

Показатель гематокрита — часть объема крови, приходящаяся на долю форменных элементов (прежде всего, эритроцитов). В норме показатель гематокрита циркулирующей крови взрослого человека составляет в среднем 40-45% (у муж- чип — 40-49%, у женщин — 36-42%). У новорожденных он приблизительно на 10% выше, а у маленьких детей — примерно на столько же ниже, чем у взрослого человека.

Плазма крови: состав и свойства

Осмотическое давление крови, лимфы и тканевой жидкости определяет обмен воды между кровью и тканями. Изменение осмотического давления жидкости, окружающей клетки, ведет к нарушению в них водного обмена. Это видно на примере эритроцитов, которые в гипертоническом растворе NaCl (много соли) теряют воду и сморщиваются. В гипотоническом растворе NaCl (мало соли) эритроциты, наоборот, набухают, увеличиваются в объеме и могут лопнуть.

Осмотическое давление крови зависит от растворенных в ней солей. Около 60% этого давления создается NaCl. Осмотическое давление крови, лимфы и тканевой жидкости приблизительно одинаково (примерно 290-300 мосм/л, или 7,6 атм) и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает значительных изменений. При избыточном поступлении в кровь вода быстро выводится почками и переходит в ткани, что восстанавливает исходную величину осмотического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соль. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.

Поддержание постоянства осмотического давления играет очень важную роль в жизнедеятельности клеток.

Концентрация водородных ионов и регуляция рН крови

Кровь имеет слабощелочную среду: рН артериальной крови равен 7,4; рН венозной крови вследствие большого содержания в ней углекислоты составляет 7,35. Внутри клеток рН несколько ниже (7,0-7,2), что обусловлено образованием в них при метаболизме кислых продуктов. Крайними пределами изменений рН, совместимыми с жизнью, являются величины от 7,2 до 7,6. Смещение рН за эти пределы вызывает тяжелые нарушения и может привести к смерти. У здоровых людей колеблется в пределах 7,35-7,40. Длительное смещение рН у человека даже на 0,1 -0,2 может оказаться гибельным.

Так, при рН 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неминуем летальный исход. Если рН становится равен 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти.

В процессе обмена веществ ткани выделяют в тканевую жидкость, а следовательно, и в кровь «кислые» продукты обмена, что должно приводить к сдвигу рН в кислую сторону. Так, в результате интенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Если это количество молочной кислоты прибавить к объему дистиллированной воды, равному объему циркулирующей крови, то концентрация ионов возрастет в ней в 40 000 раз. Реакция же крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови. Кроме того, в организме рН сохраняется за счет работы почек и легких, удаляющих из крови углекислый газ, избыток солей, кислот и щелочей.

Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

Буферная система гемоглобина самая мощная. На ее долю приходится 75% буферной емкости крови. Эта система состоит из восстановленного гемоглобина (ННb) и его калиевой соли (КНb). Буферные свойства ее обусловлены тем, что при избытке Н + КНb отдает ионы К+, а сам присоединяет Н+ и становится очень слабо диссоциирующей кислотой. В тканях система гемоглобина крови выполняет функцию щелочи, предотвращая закисление крови вследствие поступления в нее углекислого газа и Н+ -ионов. В легких гемоглобин ведет себя как кислота, предотвращая защелачивание крови после выделения из нее углекислоты.

Карбонатная буферная система (Н 2 СО 3 и NaHC0 3) по своей мощности занимает второе место после системы гемоглобина. Она функционирует следующим образом: NaHCO 3 диссоциирует на ионы Na + и НС0 3 - . При поступлении в кровь более сильной кислоты, чем угольная, происходит реакция обмена ионами Na+ с образованием слабо диссоциирующей и легко растворимой Н 2 СО 3 Таким образом, предотвращается повышение концентрации Н + -ионов в крови. Увеличение в крови содержания угольной кислоты приводит к ее распаду (под влиянием особого фермента, находящегося в эритроцитах, — карбоангидразы) на воду и углекислый газ. Последний поступает в легкие и выделяется в окружающую среду. В результате этих процессов поступление кислоты в кровь приводит лишь к небольшому временному повышению содержания нейтральной соли без сдвига рН. В случае поступления в кровь щелочи, она реагирует с угольной кислотой, образуя гидрокарбонат (NaHC0 3) и воду. Возникающий при этом дефицит угольной кислоты немедленно компенсируется уменьшением выделения углекислого газа легкими.

Фосфатная буферная система образована дигидрофосфатом (NaH 2 P0 4) и гидрофосфатом (Na 2 HP0 4) натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кислота. Второе соединение обладает щелочными свойствами. При введении в кровь более сильной кислоты она реагируете Na,HP0 4 , образуя нейтральную соль и увеличивая количество мало диссоциирующего дигидрофосфата натрия. В случае введения в кровь сильной щелочи она взаимодействует с ди гидрофосфатом натрия, образуя слабощелочной гидрофосфат натрия; рН крови при этом изменяется незначительно. В обоих случаях избыток ди гидрофосфата и гидрофосфата натрия выделяется с мочой.

Белки плазмы играют роль буферной системы благодаря своим амфотерным свойствам. В кислой среде они ведут себя как щелочи, связывая кислоты. В щелочной среде белки реагируют как кислоты, связывающие щелочи.

Важная роль в поддержании рН крови отводится нервной регуляции. При этом преимущественно раздражаются хеморецепторы сосудистых рефлексогенных зон, импульсы от которых поступают в продолговатый мозг и другие отделы ЦНС, что рефлекторно включает в реакцию периферические органы — почки, легкие, потовые железы, желудочно-кишечный тракт, деятельность которых направлена на восстановление исходных величин рН. Так, при сдвиге рН в кислую сторону почки усиленно выделяют с мочой анион Н 2 Р0 4 -. При сдиге рН в щелочную сторону увеличивается выделение почками анионов НР0 4 -2 и НС0 3 -. Потовые железы человека способны выводить избыток молочной кислоты, а легкие — СО2.

При различных патологических состояниях может наблюдаться сдвиг рН как в кислую, так и в щелочную среду. Первый из них носит название ацидоз, второй - алкалоз.

Кровь и лимфу принято называть внутренней средой организма, так как они окружают все клетки и ткани, обеспечивая их жизнедеятельность.В отношении своего происхождения кровь, как и другие жидкости организма, может рассматриваться как морская вода, окружавшая простейшие организмы, замкнутая внутрь и претерпевшая в дальнейшем определенные изменения и усложнения.

Кровь состоит из плазмы и находящихся в ней во взвешенном состоянии форменных элементов (клеток крови). У человека форменные элементы составляют 42,5+-5% для женщин и 47,5+-7% для мужчин. Эта величина называется гематокритный показатель . Циркулирующая в сосудах кровь, органы, в которых происходит образование и разрушение ее клеток, также системы их регуляции объединяются понятием "система крови ".

Все форменные элементы крови являются продуктами жизнедеятельности не самой крови, а кроветворных тканей (органов) - красного костного мозг, лимфатических узлов, селезенки. Кинетика составных частей крови включает следующие этапы: образование, размножение, дифференциация, созревание, циркуляция, старение, разрушение. Таким образом, существует неразрывная связь форменных элементов крови с вырабатывающими и разрушающими их органами, а клеточный состав периферической крови отражает в первую очередь состояние органов кроветворения и кроверазрушения.

Кровь, как ткань внутренней среды, обладает следующими особенности: составные ее части образуются вне ее, межуточное вещество ткани является жидким, основная масса крови находится в постоянном движении, осуществляя гуморальные связи в организме.

При общей тенденции к сохранению постоянства своего морфологического и химического состава, кровь является в то же время одним из наиболее чувствительных индикаторов изменений, происходящих в организме под влиянием как различных физиологических состояний, так и патологических процессов. "Кровь - зеркало организма!"

Основные физиологические функции крови .

Значение крови как важнейшей части внутренней среды организма многообразно. Можно выделить следующие основные группы функций крови:

1.Транспортные функции . Эти функции состоят в переносе необходимых для жизнедеятельности веществ (газов, питательных веществ, метаболитов, гормонов, ферментов и т.п.) Транспортируемые вещества могут оставаться в крови неизмененными, или вступать в те или иные, большей частью, нестойкие, соединения с белками, гемоглобином, другими компонентами и транспортироваться в таком состоянии. В число транспортных входят такие функции, как:

а) дыхательная , заключающаяся в транспорте кислорода из легких к тканям и углекислоты от тканей к легким;

б) питательная , заключающаяся в переносе питательных веществ от органов пищеварения к тканям, а также в переносе их из депо и в депо в зависимости от потребности в данный момент;

в) выделительная (экскреторная ), которая заключается в переносе ненужных продуктов обмена веществ (метаболитов), а также излишних солей, кислых радикалов и воды к местам их выделения из организма;

г) регуляторная , связанная с тем, что кровь является средой, с помощью которой осуществляется химическое взаимодействие отдельных частей организма между собой посредством вырабатываемых тканями или органами гормонов и других биологически активных веществ.

2. Защитные функции крови связаны с тем, что клетки крови осуществляют защиту организма от инфекционно-токсической агрессии. Можно выделить следующие защитные функции:

а) фагоцитарная - лейкоциты крови способны пожирать (фагоцитировать) чужие клетки и инородные тела, попавшие в организм;

б) иммунная - кровь является местом, где находятся различного рода антитела, образующиеся в лимфоцитами в ответ на поступление микроорганизмов, вирусов, токсинов и обеспечивающие приобретенный и врожденный иммунитет.

в) гемостатическая (гемостаз - остановка кровотечения), заключающаяся в способности крови свертываться в месте ранения кровеносного сосуда и тем самым предотвращать смертельное кровотечение.

3. Гомеостатические функции . Заключаются в участии крови и находящихся в ее составе веществ и клеток в поддержании относительного постоянства ряда констант организма. Сюда относятся:

а) поддержание рН ;

б) поддержание осмотического давления ;

в) поддержание температуры внутренней среды.

Правда, последняя функция может быть отнесена и к транспортным, так как тепло разносится циркулирующей кровью по телу от места его образования к периферии и наоборот.

Количество крови в организме. Объем циркулирующей крови (ОЦК) .

В настоящее время имеются точные методы для определения общего количества крови в организме. Принцип этих методов заключается в том, что в кровь вводят известное количество вещества, а затем через определенные интервалы времени берутся пробы крови и в них определяется содержание введенного продукта. По степени полученного разбавления высчитывается объем плазмы. После этого кровь центрифугируют в капиллярной градуированной пипетке (гематокрите) для определения гематокритного показателя, т.е. соотношения форменных элементов и плазмы. Зная гематокритный показатель, легко определить и объем крови. В качестве индикаторов применяют нетоксичные медленно выводящиеся соединения, не проникающие через сосудистую стенку в ткани (красители, поливинилпиролидон, железодекстрановый комплекс и др.) В последнее время для этой цели широко используются радиоактивные изотопы.

Определения показывают, что в сосудах человека весом 70 кг. содержится примерно 5 литров крови, что составляет 7% массы тела (у мужчин 61,5+-8,6 мл/кг, у женщин - 58,9+-4,9 мл/кг массы тела).

Введение в кровь жидкости увеличивает на короткое время ее объем. Потери жидкости - уменьшают объем крови. Однако изменения общего количества циркулирующей крови, как правило, невелики, вследствие наличия процессов, регулирующих общий объем жидкости в кровеносном русле. Регуляция объема крови основана на поддержании равновесия между жидкостью в сосудах и тканях. Потери жидкости из сосудов быстро восполняются за счет поступления ее из тканей и наоборот. Более подробно о механизмах регуляции количества крови в организме мы будем говорить позднее.

1. Состав плазмы крови .

Плазма представляет собою желтоватого цвета слегка опалесцирующую жидкость, и является весьма сложной биологической средой, в состав которой входят белки, различные соли, углеводы, липиды, промежуточные продукты обмена веществ, гормоны, витамины и растворенные газы. В нее входят как органические, так и неорганические вещества (до 9%) и вода (91-92%). Плазма крови находится в тесной связи с тканевыми жидкостями организма. Из тканей в кровь поступает большое количество продуктов обмена, но, благодаря сложной деятельности различных физиологических систем организма, в составе плазмы в норме не происходит существенных изменений.

Количеств белков, глюкозы, всех катионов и бикарбоната удерживается на постоянном уровне и самые незначительные колебания в их составе приводят к тяжелым нарушениям в нормальной деятельности организма. В то же время содержание таких веществ, как липиды, фосфор, мочевина, может меняться в значительных пределах, не вызывая заметных расстройств в организме. Весьма точно регулируется в крови концентрация солей и водородных ионов.

Состав плазмы крови имеет некоторые колебания в зависимости от возраста, пола, питания, географических особенностей места проживания, времени и сезона года.

Белки плазмы крови и их функции . Общее содержание белков крови составляет 6,5-8,5%, в среднем -7,5%. Они различны по составу и количеству входящих в них аминокислот, растворимости, устойчивости в растворе при изменениях рН, температуры, солености, по электрофоретической плотности. Роль белков плазмы весьма многообразна: они принимают участие в регуляции водного обмена, в защите организма от иммуннотоксических воздействий, в транспорте продуктов обмена, гормонов, витаминов, в свертывании крови, питании организма. Обмен их происходит быстро, постоянство концентрации осуществляется путем непрерывного синтеза и распада.

Наиболее полное разделение белков плазмы крови осуществляется с помощью электрофореза. На электрофореграмме можно выделить 6 фракций белков плазмы:

Альбумины . Их содержится в крови 4,5-6,7%, т.е. 60-65% всех плазменных белков приходится на долю альбуминов. Они выполняют в основном питательно-пластическую функцию. Не менее важна транспортная роль альбуминов, так как они могут связывать и транспортировать не только метаболиты, но лекарства. При большом накоплении жира в крови часть его тоже связывается альбуминами. Поскольку альбуминам принадлежит очень высокая осмотическая активность, на их долю приходится до 80% всего коллоидно-осмотического (онкотического) давления крови. Поэтому уменьшение количества альбуминов ведет к нарушению водного обмена между тканями и кровью и появлению отеков. Синтез альбуминов происходит в печени. Молекулярный вес их 70-100 тыс., поэтому часть их может походить через почечный барьер и обратно всасываться в кровь.

Глобулины обычно всюду сопутствуют альбуминам и являются наиболее распространенными из всех известных белков. Общее количество глобулинов в плазме составляет 2,0-3,5%, т.е. 35-40% от всех белков плазмы. По фракциям их содержание следующее:

альфа1-глобулины - 0,22-0,55 г% (4-5%)

альфа2-глобулины - 0,41-0,71г% (7-8%)

бета-глобулины - 0,51-0,90 г% (9-10%)

гамма-глобулины - 0,81-1,75 г% (14-15%)

Молекулярный вес глобулинов 150-190 тыс. Место образования может быть различным. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы. Часть - в печени. Физиологическая роль глобулинов многообразна. Так, гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). Сюда же относятся большая часть ферментов крови, а так же трансферин, церуллоплазмин, гаптоглобины и др. белки.

Фибриноген . Этот белок составляет 0,2-0,4 г%, около 4% от всех белков плазмы крови. Имеет непосредственное отношение к свертыванию, во время которого выпадает в осадок после полимеризации. Плазма, лишенная фибриногена (фибрина), носит название кровяной сыворотки .

При различных заболеваниях, особенно приводящих к нарушениям белкового обмена, наблюдаются резкие изменения в содержании и фракционном составе белков плазмы. Поэтому анализ белков плазмы крови имеет диагностическое и прогностическое значение и помогает врачу судить о степени повреждения органов.

Небелковые азотистые вещества плазмы представлены аминокислотами (4-10 мг%), мочевиной (20-40 мг%), мочевой кислотой, креатином, креатинином, индиканом и др. Все эти продукты белкового обмена в сумме называются остаточным , или небелковым азотом. Содержание остаточного азота плазмы в норме колеблется от 30 до 40 мг. Среди аминокислот одна треть приходится на долю глютамина, который переносит в крови свободный аммиак. Увеличение количества остаточного азота наблюдается главным образом при почечной патологии. Количество небелкового азота в плазме крови мужчин выше, чем в плазме крови женщин.

Безазотистые органические вещества плазмы крови представлены такими продуктами, как молочная кислота, глюкоза (80-120 мг%), липиды, органические вещества пищи и многие другие. Общее их количество не превышает 300-500 мг%.

Минеральные вещества плазмы - это в основном катионы Na+, К+, Са+, Mg++ и анионами Cl-, HCO3, HPO4, H2PO4. Общее количество минеральных веществ (электролитов) в плазме достигает 1%. Количество катионов превышает количество анионов. Наибольшее значение имеют следующие минеральные вещества:

Натрий и калий . Количество натрия в плазме составляет 300-350 мг%, калия - 15-25 мг%. Натрий находится в плазме в виде хлористого натрия, бикарбонатов, а также в связанном с белками виде. Калий тоже. Ионы эти играют важную роль в поддержании кислотно-щелочного равновесия и осмотического давления крови.

Кальций . Общее его количество в плазме составляет 8-11 мг%. Он находится там или в связанном с белками виде, или в виде ионов. Ионы Са+ выполняют важную функцию в процессах свертывания крови, сократимости и возбудимости. Поддержание нормального уровня кальция в крови происходит при участии гормона паращитовидных желез, натрия - при участии гормонов надпочечников.

Кроме перечисленных выше минеральных веществ в плазме содержатся магний, хлориды, йод, бром, железо, и ряд микроэлементов, таких как медь, кобальт, марганец, цинк, и др., имеющие большое значение для эритропоэза, ферментативных процессов и т.п.

Физико-химические свойства крови

1.Реакция крови . Активная реакция крови определяется концентрацией в ней водородных и гидроксильных ионов. В норме кровь имеет слабощелочную реакцию (рН 7,36-7,45, в среднем 7,4+-0,05). Реакция крови является величиной постоянной. Это - обязательное условие нормального течения жизненных процессов. Изменение рН на 0,3-0,4 единицы приводит к тяжелым для организма последствиям. Границы жизни находятся в пределах рН крови 7,0-7,8. Организм удерживает величину рН крови на постоянном уровне благодаря деятельности специальной функциональной системы, в которой главное место уделяется имеющимся в самой крови химическим веществам, которые, нейтрализуя значительную часть поступающих в кровь кислот и щелочей, препятствуют сдвигам рН в кислую или щелочную сторону. Сдвиг рН в кислую сторону называется ацидоз , в щелочную - алкалоз.

К веществам, постоянно поступающим в кровь и могущим изменить величину рН, относятся молочная кислота, угольная кислота и другие продукты обмена, вещества, поступающие с пищей и др.

В крови имеются четыре буферные системы - бикарбонатная (углекислота/бикарбонаты), гемоглобиновая (гемоглобин / оксигемоглобин), белковая (кислые белки / щелочные белки) и фосфатная (первичный фосфат / вторичный фосфат).Подробно их работа изучается в курсе физической и коллоидной химии.

Все буферные системы крови, взятые вместе, создают в крови так называемый щелочной резерв , способный связывать кислые продукты, поступающие в кровь. Щелочной резерв плазмы крови в здоровом организме более или менее постоянен. Он может быть снижен при избыточном поступлении или образовании кислот в организме (например, при интенсивной мышечной работе, когда образуется много молочной и угольной кислот). Если это снижение щелочного резерва не привело еще к реальным изменениям рН крови, то такое состояние называют компенсированным ацидозом . При некомпенсированном ацидозе щелочной резерв расходуется полностью, что ведет к снижению рН (например, так бывает при диабетической коме).

Когда ацидоз связан с поступлением в кровь кислых метаболитов или других продуктов, он носит название метаболического или не газового. Когда же ацидоз возникает при накоплении в организме преимущественно углекислоты - он называется газовым . При избыточном поступлении в кровь продуктов обмена щелочного характера (чаще с пищей, так как продукты обмена в основном кислые) то щелочной резерв плазмы увеличивается (компенсированный алкалоз ). Он может увеличиваться, например, при усиленной гипервентиляции легких, когда имеет место избыточное удаление углекислоты из организма (газовый алкалоз). Некомпенсированный алкалоз бывает чрезвычайно редко.

Функциональная система поддержания рН крови (ФСрН) включает в себя целый ряд анатомически неоднородных органов, в комплексе позволяющих достигнуть очень важного для организма полезного результата - обеспечения постоянства рН крови и тканей. Появление кислых метаболитов или щелочных веществ крови сразу же нейтрализуется соответствующими буферными системами и одновременно от специфических хеморецепторов, заложенных как в стенках кровеносных сосудов, так и в тканях, в ЦНС поступают сигналы о возникновении сдвига в реакциях крови (если таковой действительно произошел). В промежуточном и продолговатом отделах мозга находятся центры, регулирующие постоянство реакции крови. Оттуда по афферентным нервам и по гуморальным каналам команды поступают к исполнительным органам, способным исправить нарушение гомеостаза. К числу таких органов относятся все органы выделения (почки, кожа, легкие), которые выбрасывают из организма как сами кислые продукты, так и продукты их реакций с буферными системами. Кроме того, в деятельности ФСрН принимают участие органы ЖКТ, которые могут быть как местом выделения кислых продуктов, так и местом, откуда всасываются необходимые для их нейтрализации вещества. Наконец, к числу исполнительных органов ФСрН относится и печень, где происходит дезинтоксикация потенциально вредных продуктов, как кислых так и щелочных. Надо отметить, что кроме этих внутренних органов, в ФСрН есть и внешнее звено - поведенческое, когда человек целенаправленно ищет во внешней среде вещества, которых ему не хватает для поддержания гомеостаза ("Кисленького хочется!"). Схема этой ФС представлена на схеме.

2. Удельный вес крови (УВ). УВ крови зависит в основном от числа эритроцитов, содержащегося в них гемоглобина и белкового состава плазмы. У мужчин он равен 1,057, у женщин - 1,053, что объясняется различным содержанием эритроцитов. Суточные колебания не превышают 0.003. Увеличение УВ закономерно наблюдается после физического напряжения и в условиях воздействия высоких температур, что свидетельствует о некотором сгущении крови. Понижение УВ после кровепотери связано с большим притоком жидкости из тканей. Наиболее распространенный метод определения - медно-сульфатный, принцип которого заключается в помещении капли крови в ряд пробирок с растворами сульфата меди известного удельного веса. В зависимости от УВ крови капля тонет, всплывает или плавает в том месте пробирки, где ее поместили.

3. Осмотические свойства крови . Осмосом называется проникновение молекул растворителя в раствор через разделяющую их полупроницаемую перепонку, через которую не проходят растворенные вещества. Осмос совершается и в том случае, если такая перегородка разделяет растворы с разной концентрацией. При этом растворитель перемещается через мембрану в сторону раствора с большей концентрацией до тех пор, пока эти концентрации не сравняются. Мерой осмотических сил является осмотическое давление (ОД). Оно равно такому гидростатическому давлению, который над приложить к раствору чтобы прекратить в него проникновение молекул растворителя. Величина эта определяется не химической природой вещества, а числом растворенных частиц. Она прямо пропорциональна молярной концентрации вещества. Одно- молярный раствор имеет ОД 22,4 атм., так как осмотическое давление определяется давлением, которое может оказывать в равном объеме растворенное вещество в виде газа (1гМ газа занимает объем 22,4 л. Если это количество газа поместить в сосуд объемом 1л, он будет давить на стенки с силой 22,4 атм.).

Осмотическое давление следует рассматривать не как свойство растворенного вещества, растворителя или раствора, а как свойство системы, состоящей из раствора, растворенного вещества и разделяющей их полупроницаемой перепонки.

Кровь как раз является такой системой. Роль полупроницаемой перегородки в этой системе играют оболочки клеток крови и стенки кровеносных сосудов, растворителем служит вода, в которой находятся минеральные и органические вещества в растворенном виде. Эти вещества создают в крови среднюю молярную концентрацию около 0,3 гМ, и поэтому развивают осмотическое давление, равное для крови человека 7,7 - 8,1 атм. Почти 60% этого давления приходится на долю поваренной соли (NaCl).

Величина осмотического давления крови имеет важнейшее физиологическое значение, так как в гипертонической среде вода выходит из клеток (плазмолиз ), а в гипотонической - наоборот, входит в клетки, раздувает их и даже может разрушить (гемолиз ).

Правда, гемолиз может наступать не только при нарушении осмотического равновесия, но и под действием химических веществ - гемолизинов. К ним относятся сапонины, желчные кислоты, кислоты и щелочи, аммиак, спирты, змеиный яд, бактериальные токсины и др.

Величина осмотического давления крови определяется криоскопическим методом, т.е. по точке замерзания крови. У человека температура замерзания плазмы равна -0,56-0,58оС. Осмотическое давление крови человека соответствует давлению 94% NaCl, такой раствор носит название физиологического .

В клинике, когда возникает необходимость введения в кровь жидкости, например, при обезвоживании организма, или при внутривенном введении лекарств обычно применяют этот раствор, который изотоничен плазме крови. Однако, хотя его и называют физиологическим, он таковым в строгом смысле не является, так как в нем отсутствуют остальные минеральные и органические вещества. Более физиологическими растворами являются такие, как раствор Рингера, Рингер-Локка, Тироде, Крепс-Рингера и т.п. Они приближаются к плазме крови по ионному составу (изоионичны). В ряде случаев, особенно для замены плазмы при кровепотере, применяются жидкости кровезаменители, приближающиеся к плазме не только по минеральному, но и по белковому, крупномолекулярному составу.

Дело в том, что белки крови играют большую роль в правильном водном обмене между тканями и плазмой. Осмотическое давление белков крови называется онкотическим давлением . Оно равно примерно 28 мм.рт.ст. т.е. составляет менее 1/200 общего осмотического давления плазмы. Но так как капиллярная стенка очень мало проницаема для белков и легко проходима для воды и кристаллоидов, то именно онкотическое давление белков является наиболее эффективным фактором, удерживающим воду в кровеносных сосудах. Поэтому уменьшение количества белков в плазме приводит к появлению отеков, к выходу воды из сосудов в ткани. Из белков крови наибольшее онкотическое давление развивают альбумины.

Функциональная система регуляции осмотического давления . Осмотическое давление крови млекопитающих и человека в норме держится на относительно постоянном уровне (опыт Гамбургера с введением в кровь лошади 7 л 5% раствора сернокислого натрия). Все это происходит за счет деятельности функциональной системы регуляции осмотического давления, которая тесно увязана с функциональной системой регуляции водно-солевого гомеостаза, так как использует те же исполнительные органы.

В стенках кровеносных сосудов имеются нервные окончания, реагирующие на изменения осмотического давления (осморецепторы ). Раздражение их вызывает возбуждение центральных регуляторных образований в продолговатом и промежуточном мозге. Оттуда идут команды, включающие те или иные органы, например, почки, которые удаляют избыток воды или солей. Из других исполнительных органов ФСОД надо назвать органы пищеварительного тракта, в которых происходит как выведение избытка солей и воды, так и всасывание необходимых для восстановления ОД продуктов; кожу, соединительная ткань которой вбирает в себя при понижении осмотического давления избыток воды или отдает ее последней при повышении осмотического давления. В кишечнике растворы минеральных веществ всасываются только в таких концентрациях, которые способствуют установлению нормального осмотического давления и ионного состава крови. Поэтому при приеме гипертонических растворов (английская соль, морская вода) происходит обезвоживание организма за счет выведения воды в просвет кишечника. На этом основано слабительное действие солей.

Фактором, способным изменять осмотическое давление тканей, а также крови, является обмен веществ, ибо клетки тела потребляют крупномолекулярные питательные вещества, и выделяют взамен значительно большее число молекул низкомолекулярных продуктов своего обмена. Отсюда понятно, почему венозная кровь, оттекающая от печени, почек, мышц имеет большее осмотическое давление, чем артериальная. Не случайно, что в этих органах находится наибольшее количество осморецепторов.

Особенно значительные сдвиги осмотического давления в целом организме вызывает мышечная работа. При очень интенсивной работе деятельность выделительных органов может оказаться недостаточной для сохранения осмотического давления крови на постоянном уровне и в итоге может наступить его увеличение. Сдвиг осмотического давления крови до 1,155% NaCl делает невозможным дальнейшее выполнение работы (один из компонентов утомления).

4. Суспензионные свойства крови . Кровь является устойчивой суспензией мелких клеток в жидкости (плазме), Свойство крови как устойчивой суспензии нарушается при переходе крови к статическому состоянию, что сопровождается оседанием клеток и наиболее отчетливо проявляется со стороны эритроцитов. Отмеченный феномен используется для оценки суспензионной стабильности крови при определении скорости оседания эритроцитов (СОЭ).

Если предохранить кровь от свертывания, то форменные элементы можно отделить от плазмы простым отстаиванием. Это имеет практическое клиническое значение, так как СОЭ заметно меняется при некоторых состояниях и болезнях. Так, СОЭ сильно ускоряется у женщин при беременности, у больных туберкулезом, при воспалительных заболеваниях. При стоянии крови эритроциты склеиваются друг с другом (агглютинируют), образуя так называемые монетные столбики, а затем и конгломераты монетных столбиков (агрегация), которые оседают тем быстрее, чем больше их величина.

Агрегация эритроцитов, их склеивание зависит от изменения физических свойств поверхности эритроцитов (возможно, с изменением знака суммарного заряда клетки с отрицательного на положительный), а также от характера взаимодействия эритроцитов с белками плазмы. Суспензионные свойства крови зависят преимущественно от белкового состава плазмы: увеличение содержания грубодисперсных белков при воспалении сопровождается снижением суспензионной устойчивости и ускорением СОЭ. Величина СОЭ зависит и от количественного соотношения плазмы и эритроцитов. У новорожденных СОЭ равна 1-2 мм/час, у мужчин 4-8 мм/час, у женщин 6-10 мм/час. Определяют СОЭ по методу Панченкова (см. практикум).

Ускоренной СОЭ, обусловленной изменением белков плазмы особенно при воспалении, соответствует и повышенная агрегация эритроцитов в капиллярах. Преимущественная агрегация эритроцитов в капиллярах связана с физиологическим замедлением тока крови в них. Доказано, что в условиях замедленного кровотока увеличение содержания в крови грубодисперсных белков приводит к более выраженной агрегации клеток. Агрегация эритроцитов, отражая динамичность суспензионных свойств крови, является одним из древнейших защитных механизмов. У беспозвоночных агрегация эритроцитов играет ведущую роль в процессах гемостаза; при воспалительной реакции это приводит к развитию стаза (остановки кровотока в пограничных областях), способствуя отграничению очага воспаления.

В последнее время доказано, что в СОЭ имеет значение не столько заряд эритроцитов, сколько характер его взаимодействия с гидрофобными комплексами белковой молекулы. Теория нейтрализации заряда эритроцитов белками не доказана.

5. Вязкость крови (реологические свойства крови). Вязкость крови, определяемая вне организма, превышает вязкость воды в 3-5 раз и зависит преимущественно от содержания эритроцитов и белков. Влияние белков определяется особенностями структуры их молекул: фибриллярные белки повышают вязкость в значительно большей степени, чем глобулярные. Выраженный эффект фибриногена связан не только с высокой внутренней вязкостью, но обусловлен и вызываемой им агрегацией эритроцитов. В физиологических условиях вязкость крови in vitro нарастает (до 70%) после напряженной физической работы и является следствием изменения коллоидных свойств крови.

In vivo вязкость крови характеризуется значительной динамичностью и меняется в зависимости от длины и диаметра сосуда и скорости кровотока. В отличие от однородных жидкостей, вязкость которых нарастает с уменьшением диаметра капилляра, со стороны крови отмечается обратное: в капиллярах вязкость уменьшается. Это связано с неоднородностью структуры крови, как жидкости, и изменением характера протекания клеток по сосудам разного диаметра. Так, эффективная вязкость, измеренная особыми динамическими вискозиметрами, такова: аорта - 4,3; малая артерия - 3,4; артериолы - 1,8; капилляры - 1; венулы - 10; малые вены - 8; вены 6,4. Показано, что если бы вязкость крови была бы постоянной величиной, то сердцу пришлось бы развивать в 30-40 раз большую мощность, чтобы протолкнуть кровь через сосудистую систему, так как вязкость участвует в формировании периферического сопротивления.

Снижение свертываемости крови в условиях введения гепарина сопровождается понижением вязкости и одновременно ускорением скорости кровотока. Показано, что вязкость крови всегда снижается при анемиях, повышается при полицитемиях, лейкемии, некоторых отравлениях. Кислород понижает вязкость крови, поэтому венозная кровь более вязкая, чем артериальная. При повышении температуры вязкость крови понижается.

К форменным элементам, или клеткам, крови относятся три класса: эритроциты, лейкоциты и тромбоциты.

Эритроциты. Морфология эритроцитов. Зрелые эритроциты у рептилий, амфибий, рыб и птиц имеют ядра. Эритроциты млекопитающих - безъядерные: ядра исчезают на ранней стадии развития в костном мозге. Эритроциты могут быть в форме двояковогнутого диска, круглые или овальные (овальные у лам и верблюдов) (рис. 3.2.) Каждый эритроцит желтовато-зеленого цвета, но в толстом слое эритроцитарная масса красного цвета (лат. erythros - красный). Красный цвет крови обусловлен наличием в эритроцитах гемоглобина.

Образуются эритроциты в красном костном мозге. Средняя продолжительность их существования составляет около 120 сут;

разрушаются они в селезенке и в печени, лишь небольшая их часть подвергается фагоцитозу в сосудистом русле.

Эритроциты, находящиеся в кровяном русле, неоднородны. Они различаются по возрасту, форме, размеру, устойчивости к неблагоприятным воздействиям. В периферической крови одновременно находятся молодые, зрелые и старые эритроциты. Молодые эритроциты в цитоплазме имеют включения - остатки ядерной субстанции и называются ретикулоцитами. В норме ретикулоциты составляют не более 1 % от всех эритроцитов, повышенное их содержание указывает на усиление эритропоэза.

Рис. 3.2. Форма эритроцитов:

А - двояковогнутый диск (норма); Б - сморщенный в гипертоническом солевом растворе

Двояковогнутая форма эритроцитов обеспечивает большую площадь поверхности, поэтому общая поверхность эритроцитов в 1,5-2 тысячи раз превышает поверхность тела животного. Часть эритроцитов имеет шарообразную форму с выступами (шипи- ками), такие эритроциты называются эхиноцитами. Некоторые эритроциты - куполообразной формы - стомациты.

Диаметр эритроцитов у разных видов животных различен. Очень крупные эритроциты у лягушек (до 23 мкм) и у кур (12 мкм). Среди млекопитающих самые маленькие эритроциты - 4 мкм - имеют овцы и козы, а самые большие - свиньи и лошади (6...8 мкм). У животных одного вида в основном размеры эритроцитов одинаковы, и только небольшая часть имеет колебания в пределах 0,5...1,5 мкм.

Мембрана эритроцитов, как и у всех клеток, состоит из двух молекулярных липидных слоев, в которые встроены белковые молекулы. Одни молекулы образуют ионные каналы для транспорта веществ, а другие являются рецепторами (например, хо- линорецепторы) или имеют антигенные свойства (например, агглютиногены). В мембране эритроцитов высокий уровень холинэстеразы, что предохраняет их от плазменного (внесинапти- ческого) ацетилхолина.

Через полупроницаемую мембрану эритроцитов хорошо проходят кислород и углекислый газ, вода, ионы хлора, бикарбонаты. Ионы калия и натрия проникают через мембрану медленно, а для ионов кальция, белковых и липидных молекул мембрана непроницаема. Ионный состав эритроцитов отличается от состава плазмы крови: внутри эритроцитов поддерживается более высокая концентрация калия и меньшая натрия, чем в плазме крови. Градиент концентрации указанных ионов сохраняется за счет работы натрий-калиевого насоса.

Гемоглобин - дыхательный пигмент, составляет до 95 % сухого остатка эритроцитов. В цитоплазме эритроцитов имеются нити актина и миозина, формирующие цитоскелет и ряд ферментов.

Оболочка эритроцитов эластична, поэтому они способны проходить через мелкие капилляры, диаметр которых в некоторых органах меньше диаметра эритроцитов.

При повреждении оболочки из эритроцитов в плазму крови выходит гемоглобин и другие компоненты цитоплазмы. Такое явление называется гемолизом. У здоровых животных в плазме разрушается очень небольшое количество старых эритроцитов, это - физиологический гемолиз. Причины более значительного гемолиза как in vivo, так и in vitro могут быть различными.

Осмотический гемолиз наступает при снижении осмотического давления плазмы крови. В таком случае вода проникает внутрь эритроцитов, эритроциты увеличиваются в размерах и разрываются. Устойчивость эритроцитов к гипотоническим растворам называется осмотической резистентностью. Ее можно определить, помешая эритроциты, отмытые от плазмы крови, в растворы хлорида натрия разной концентрации - от 0,9 до 0,1 %. Обычно гемолиз начинается при концентрации хлорида натрия 0,5...0,7 %; полностью все эритроциты разрушаются при концентрации 0,3...0,4 %. Границы концентрации, при которых начинается и заканчивается гемолиз, называют шириной резистентности эритроцитов. Следовательно, не все эритроциты обладают одинаковой устойчивостью к гипотоническим растворам.

Осмотическая резистентность эритроцитов зависит от проницаемости их мембраны для воды, что связано с ее строением и возрастом эритроцитов. Повышение устойчивости эритроцитов, когда они выдерживают более низкую концентрацию соли, указывает на «старение» крови и задержку эритропоэза, а понижение резистентности - на «омоложение» крови, усиление кроветворения.

Механический гемолиз возможен при взятии крови (в пробирке): при насасывании из вены через узкие иглы, при грубом встряхивании и перемешивании. При заборе крови из вены струя крови из иглы должна стекать по стенке пробирки, а не ударяться о дно.

Термический гемолиз происходит при резком изменении температуры крови: например, при взятии крови у животного в зимнее время в холодную пробирку, при замораживании. При замораживании вода в клетках крови превращается в лед и кристаллы льда, увеличиваясь в объеме, разрушают оболочку. Термический гемолиз наступает также при нагревании крови выше 50...55 "С вследствие коагуляции белков в мембранах.

Химический гемолиз обычно наблюдается вне организма, при попадании в кровь кислот, щелочей, органических растворителей - спиртов, эфира, бензола, ацетона и др.

Биологический, или токсический, гемолиз может произойти прижизненно, при попадании в кровь различных гемолитических ядов (например, при змеиных укусах, при некоторых отравлениях). Биологический гемолиз возникает при переливании несовместимой группы крови.

Гемоглобин и его формы. Гемоглобин представляет собой соединение четырех молекул гема (небелковая пигментная группа) с глобином (простетическая группа). Гем содержит двухвалентное железо. Гем у животных всех видов одинакового состава, а глобины отличаются своим аминокислотным составом. Кристаллы гемоглобина имеют видовые особенности, что используется для идентификации крови или ее следов в судебной ветеринарии и медицине.

Гемоглобин связывает кислород и диоксид углерода и легко их отщепляет, благодаря чему осуществляет дыхательную функцию. Синтез гемоглобина происходит в красном костном мозге эри- тробластами и в течение существования эритроцитов не обменивается. При разрушении старых эритроцитов гемоглобин превращается в желчные пигменты - билирубин и биливердин. В печени эти пигменты переходят в состав желчи и удаляются из организма через кишечник. Основная часть железа из разрушенного гема снова расходуется на синтез гемоглобина, а меньшая часть удаляется из организма, поэтому организму постоянно необходимо поступление железа с пищей.

Различают несколько форм гемоглобина (НЬ). Примитивный и фетальный гемоглобин - соответственно у зародыша и плода. Эти формы гемоглобина насыщаются при меньшем содержании кислорода в крови, чем у взрослых животных. В течение первого года жизни у сельскохозяйственных животных фетальный гемоглобин (HbF) замешается полностью на гемоглобин, свойственный взрослым, - НЬА.

Оксигемоглобин (НЬ0 2) - соединение гемоглобина с кислородом. Восстановленный, или редуцированный, - это гемоглобин, отдавший кислород.

Карбогемоглобин (НЬССЬ) - гемоглобин, присоединивший диоксид углерода. НЬ0 2 и НЬС0 2 - соединения непрочные, они легко отдают присоединившиеся молекулы газов.

Карбоксигемоглобин (НЬСО) - соединение гемоглобина с угарным газом (СО). Гемоглобин значительно быстрее соединяется с угарным газом, чем с кислородом. Даже небольшая примесь угарного газа в воздухе - всего 0,1% - блокирует около 80 % гемоглобина, т. е. он уже не может присоединить кислород и выполнить свою дыхательную функцию. НЬСО нестоек, и если пострадавшему вовремя обеспечить доступ свежего воздуха, то гемоглобин быстро освобождается от угарного газа.

Миоглобин - тоже соединение кислорода с гемоглобином, но это вещество находится не в крови, а в мышцах. Миоглобин участвует в обеспечении кислородом мышц в условиях недостаточности его в крови (например, у ныряющих животных).

Во всех перечисленных формах гемоглобина валентность железа не меняется. Если же под воздействием каких-либо сильных окислителей железо в геме становится трехвалентным, то такая форма гемоглобина называется метгемоглобин. Метгемоглобин не может присоединять кислород. В физиологических условиях концентрация метгемоглобина в крови небольшая - всего ...2% от всего гемоглобина, причем он находится в основном в старых эритроцитах. Считают, что причиной физиологической метгемо- глобинемии является окисление железа в геме за счет активных ионизированных молекул кислорода, поступающих в эритроцит, хотя в эритроцитах имеется фермент, поддерживающий двухвалентную форму железа.

Предполагают, что в физиологических условиях метгемоглобин обезвреживает ядовитые вещества - токсины, образующиеся в организме в процессе обмена веществ или поступающие извне: цианиды, фенол, сернистый водород, янтарная и масляная кислоты и др.

Если же значительная часть гемоглобина крови перейдет в метгемо- глобин, то возникнет кислородная недостаточность тканей. Такое состояние может быть при отравлении нитратами и нитритами.

Количество гемоглобина в крови является важным клиническим показателем дыхательной функции крови. Оно измеряется в граммах на литр крови (г/л). У лошади уровень гемоглобина в среднем 90...150 г/л, у крупного рогатого скота -

100...130, у свиней - 100...120 г/л.

Другой важный показатель - это количество эритроцитов в крови. В среднем у крупного рогатого скота в 1 л крови содержится (5...7) 10 12 эритроцитов. Коэффициент 10 12 называется «тера», и общий вид записи следующий: 5...7 Т/л (читается: тера на литр). У свиней в крови содержится 5...8 Т/л эритроцитов, у коз до 14 Т/л. У коз большое количество эритроцитов обусловлено тем, что они очень маленького размера, поэтому объем всех эритроцитов у коз такой же, как у других животных.

Содержание эритроцитов в кррви у лошадей зависит от их породы и хозяйственного использования: у лошадей шаговых пород - 6...8 Т/л, у рысистых - 8...10, а у верховых-до 11 Т/л. Чем больше потребность организма в кислороде и питательных веществах, тем больше эритроцитов содержится в крови. У высокопродуктивных молочных коров уровень эритроцитов соответствует верхней границе нормы, у низкомолочных - нижней.

У новорожденных животных количество эритроцитов в крови всегда больше, чем у взрослых. Так, у т^лят 1 ...6-месячного возраста содержание эритроцитов доходит до 8... 10 Т/л и стабилизируется на уровне, свойственном взрослым животным, к 5...6 годам. У самцов в крови содержится больше эритроцитов, чем у самок.

Функции эритроцитов:

  • 1. Перенос кислорода от легких к тканям и диоксида углерода от тканей к легким.
  • 2. Поддержание pH крови (гемоглобин и оксигемоглобин составляют одну из буферных систем крови).
  • 3. Поддержание ионного гомеостаза за счет обмена ионами между плазмой и эритроцитами.
  • 4. Участие в водном и солевом обмене.
  • 5. Адсорбция токсинов, в том числе продуктов распада белка, что уменьшает их концентрацию в плазме крови и препятствует переходу в ткани.
  • 6. Участие в ферментативных процессах, в транспорте питательных веществ - глюкозы, аминокислот.

Уровень содержания эритроцитов в крови изменяется. Уменьшение количества эритроцитов ниже нормы (эозинопения) у взрослых животных обычно наблюдается только при заболеваниях, а повышение сверх нормы возможно и при заболеваниях, и у здоровых животных. Увеличение содержания эритроцитов в крови у здоровых животных называется физиологическим эритроцитозом. Различают три формы физиологических эритроцитозов: перераспределительный, истинный и относительный.

Перераспределительный эритроцитоз возникает быстро и является механизмом срочной мобилизации эритроцитов при внезапной нагрузке - физической или эмоциональной. При нагрузке возникает кислородное голодание тканей, в крови накапливаются не- доокисленные продукты обмена. Раздражаются хеморецепторы сосудов, возбуждение передается в ЦНС. Ответная реакция осуществляется при участии симпатической нервной системы. Происходит выброс крови из кровяных депо и синусов костного мозга. Таким образом, механизмы перераспределительного эритроцитоза направлены на перераспределение имеющегося запаса эритроцитов между депо и циркулирующей кровью. После прекращения нагрузки содержание эритроцитов в крови восстанавливается.

Истинный эритроцитоз характеризуется увеличением активности костномозгового кроветворения. Для развития истинного эритроцитоза требуется более длительное время, а регуляторные процессы оказываются более сложными. Индуцируется длительной кислородной недостаточностью тканей с образованием в почках низкомолекулярного белка - эритропоэтина, который и активизирует эритропоэз. Истинный эритроцитоз обычно развивается при систематических мышечных тренировках, длительном содержании животных в условиях пониженного атмосферного давления. К этому же типу относится эритроцитоз у новорожденных животных.

Рассмотрим на конкретном примере, как смена условий содержания животных приводит к развитию у них физиологического эритроцитоза. В южных районах России практикуют отгонное животноводство. Летом скот начинают перегонять на высокогорные пастбища, где не жарко, хороший травостой, нет кровососущих насекомых. Вначале, когда скот поднимается по дорогам вверх, в горы, для обеспечения увеличенной потребности в кислороде происходит перераспределение эритроцитов между кровяными депо и циркулирующей кровью (перераспределительный эритроцитоз). По мере поднятия в горы к физической нагрузке добавляется еще один мощный фактор воздействия - разрежение воздуха, т. е. понижение атмосферного давления и содержания кислорода в воздухе. Постепенно, в течение нескольких дней костный мозг перестраивается на новый, более интенсивный уровень кроветворения, и перераспределительный эритроцитоз сменяется истинным. Истинный эритроцитоз сохраняется в течение длительного времени после возвращения животных осенью в равнинные места, что повышает резистентность организма к неблагоприятным природно-климатическим условиям.

Относительный эритроцитоз не связан ни с перераспределением крови, ни с выработкой новых эритроцитов. Относительный эритроцитоз наблюдается при обезвоживании животного, вследствие чего возрастает гематокрит, т. е. содержание эритроцитов в единице объема крови увеличивается, а плазмы - уменьшается. После обильного поения или введения в кровь физиологического раствора гематокритная величина восстанавливается.

Реакция оседания эритроцитов. Если взять кровь у животного, добавить в нее антикоагулянт и дать отстояться, то через некоторое время можно наблюдать оседание эритроцитов, а в верхней части сосуда будет находиться слой плазмы крови.

Скорость оседания эритроцитов (СОЭ) учитывают по отстоявшемуся столбику плазмы в миллиметрах за час или 24 ч. По методу Панченкова СОЭ определяют в капиллярных трубках, закрепленных в штативе вертикально. У животных СОЭ видоспецифична: быстрее всего оседают эритроциты у лошади (40...70 мм/ч), медленнее всего - у жвачных (0,5...1,5 мм/ч и 10...20 мм/24ч); у свиней - в среднем 6... 10 мм/ч, а у птиц 2...4 мм/ч.

Основная причина оседания эритроцитов заключается в их склеивании, или агглютинации. Поскольку плотность эритроцитов больше, чем плазмы крови, то образовавшиеся комочки из склеившихся эритроцитов оседают. Эритроциты, находящиеся в кровяном русле и движущиеся с током крови, имеют одинаковые электрические заряды и отталкиваются друг от друга. В крови, находящейся вне организма («в стекле»), эритроциты теряют свои заряды и начинают образовывать так называемые монетные столбики. Такие агрегаты становятся более тяжелыми и оседают.

Эритроциты лошади в отличие от других видов животных имеют на мембранах агглютиногены, которые, вероятно, и вызывают ускоренную агглютинацию, поэтому все эритроциты у лошади оседают в первый час реакции.

Что влияет на скорость оседания эритроцитов?

  • 1. Количество эритроцитов в крови и их заряд. Чем больше эритроцитов в крови, тем медленнее они оседают. Напротив, при всех случаях анемии (уменьшения содержания эритроцитов) СОЭ возрастает.
  • 2. Вязкость крови. Чем больше вязкость крови, тем медленнее оседают эритроциты.
  • 3. Реакция крови. При ацидозах СОЭ уменьшается. Это явление может быть хорошим тестом для выбора оптимального режима тренировки для спортивной лошади. Если после нагрузки СОЭ значительно снижается, то это может быть связано с накоплением в крови недоокисленных продуктов (метаболический ацидоз). Следовательно, такой лошади надо уменьшить нагрузку.
  • 4. Белковый спектр плазмы крови. При увеличении в крови глобулинов и фибриногена СОЭ ускоряется. Причиной ускорения оседания эритроцитов является адсорбция упомянутых белков на поверхности эритроцитов, нейтрализация их зарядов и утяжеление клеток. Поэтому СОЭ увеличивается при беременности (перед родами), а также при инфекционных болезнях и воспалительных процессах.

СОЭ является важным клиническим показателем состояния животного. При заболеваниях СОЭ может замедляться, ускоряться или оставаться в пределах нормы, что важно в дифференциальной диагностике. Однако надо иметь в виду, что и у здоровых животных возможны колебания СОЭ, поэтому следует оценивать совокупность и лабораторных, и клинических показателей.

Лейкоциты. Количество лейкоцитов. У здоровых лошадей, крупного и мелкого рогатого скота в крови содержится

6... 10 Г/л лейкоцитов (Г = 10 9 ; читают: гига на литр); у свиней лейкоцитов больше - 8... 16, а у птиц - 20...40 Г/л. Уменьшение количества лейкоцитов в крови называется лейкопенией. В последние десятилетия наметилась тенденция к снижению числа лейкоцитов в крови у здоровых животных и людей до 4 Г/л. Считают, что небольшая лейкопения связана с нарушениями экологии и не всегда является патологией.

Увеличение количества лейкоцитов называется лейкоцитозом. Лейкоцитозы подразделяют на физиологические, патологические и медикаментозные. У здоровых животных лейкоцитоз может быть в следующих случаях.

  • 1. Лейкоцитоз беременных - в последнюю стадию беременности.
  • 2. Лейкоцитоз новорожденных.
  • 3. Алиментарный лейкоцитоз, то есть связанный с приемом корма. Обычно бывает у животных с однокамерным желудком через 2...4 ч после кормления, во время интенсивного всасывания веществ из кишечника.
  • 4. Миогенный лейкоцитоз. Возникает у лошадей после напряженной физической нагрузки. Чем тяжелее и изнурительнее была работа, тем выше лейкоцитоз; в крови появляются перерожденные, дегенеративные клетки. Так, у лошадей после очень интенсивной нагрузки отмечали до 50 Г/л лейкоцитов, что в 5... 10 раз больше нормы.
  • 5. Эмоциональный лейкоцитоз. Проявляется при сильных эмоциональных перегрузках, при болевых раздражениях. Например, лейкоцитоз у студентов при сдаче трудного экзамена.
  • 6. Условно-рефлекторный лейкоцитоз. Вырабатывается, если индифферентный раздражитель неоднократно сочетать с безусловным, вызывающим лейкоцитоз. Например, если одновременно с нанесением болевого раздражения включать звонок, то после нескольких опытов уже один звонок вызывает лейкоцитоз.

По механизму развития физиологические лейкоцитозы могут быть двух типов: перераспределительные и истинные. Как и эри- троцитозы, перераспределительные лейкоцитозы являются временными за счет перехода лейкоцитов из кровяных депо или пассивного вымывания из кроветворных органов. Истинные лейкоцитозы возникают при более интенсивном кроветворении, они развиваются медленно, но сохраняются в течение длительного времени. Относительных лейкоцитозов, по аналогии с относительным эритроцитозом, не бывает, так как общее количество лейкоцитов в крови намного меньше, чем эритроцитов. Поэтому при сгущении крови увеличение гематокрита происходит за счет эритроцитов, а не лейкоцитов.

Функции лейкоцитов. В крови присутствуют две группы лейкоцитов: зернистые, или гранулоциты (содержат в цитоплазме зернистость, видимую при фиксации и окраске мазка), и незернистые, или агранулоциты (зернистость в цитоплазме отсутствует). К зернистым лейкоцитам относятся базофилы, эозинофилы и нейтрофилы. Незернистые лейкоциты - лимфоциты и моноциты.

Все гранулоциты образуются в красном костном мозге. Их количество в синусах костного мозга больше, чем в крови, примерно в 20 раз, они и являются резервом для перераспределительного лейкоцитоза. При полной остановке развития лейкоцитов костный мозг способен в течение 6 сут поддерживать нормальный уровень их в крови.

Лейкоциты задерживаются в костном мозге в зрелом состоянии до 3 сут, после чего попадают в кровоток. Однако через несколько дней гранулоциты навсегда покидают сосудистое русло и мигрируют в ткани, где продолжают осуществлять свои функции и впоследствии разрушаются. Они удаляются из организма и другим путем, слущиваясь со слизистых оболочек верхних дыхательных путей, желудочно-кишечного тракта и мочеполовых путей. Продолжительность жизни гранулоцитов - от нескольких часов до 4...6 сут.

Базофилы. Базофилы синтезируют в гранулах и выделяют в кровь гистамин и гепарин. Гепарин является основным антикоагулянтом, он препятствует свертыванию крови в сосудах. Гистамин - антагонист гепарина. Кроме того, гистамин выполняет ряд других функций: он стимулирует фагоцитоз, увеличивает проницаемость кровеносных сосудов, расширяет артериолы, капилляры и венулы. Базофилы синтезируют также и другие БАВ - хе- мотоксические факторы, привлекающие эозинофилы и нейтрофилы, простагландины, некоторые факторы свертывания крови. В крови содержание базофилов очень незначительное - до 1 % по отношению ко всем лейкоцитам.

Близкими по своим морфологическим и физиологическим свойствам являются тучные клетки. Они находятся не в крови, хотя в небольшом количестве могут в ней присутствовать, а в соединительнотканных пространствах. Большей частью они встречаются вокруг кровеносных сосудов, главным образом в коже, по всему дыхательному и пищеварительному тракту, то есть в местах контакта внутренней среды организма с внешней. Уже само расположение тучных клеток наводит на мысль о том, что они участвуют в защитных реакциях организма от вредоносных факторов внешней среды. Скопление тучных клеток обнаруживается также там, где появился чужеродный белок.

Происхождение тучных клеток пока не выяснено. Вероятно, они образуются в костном мозге и могут мигрировать из крови в соединительнотканные пространства. Установлено, что тучные клетки могут размножаться.

Механизмы дегрануляции базофилов и тучных клеток, очевидно, одинаковы и зависят от функционального состояния этих клеток. В состоянии покоя клеток происходит медленный экзоцитоз (выделение) везикул, содержащих ВДВ. При усиленном функционировании, действии на клетку различных агрессивных факторов мелкие гранулы (везикулы) объединяются, образуются «каналы» между гранулой и внеклеточной средой, или же гранулы сливаются с наружной мембраной клетки, последняя разрывается, при этом клетка иногда полностью разрушается. В любом случае на грануляцию базофилов и тучных клеток идет внутриклеточный запас кальция, а для перемещения, или транслокации, гранул используются сократительные микрофиламентные структуры клеток.

Активация базофилов стимулируется иммунным комплексом антиген-иммуноглобулин Е и другими веществами - компонентами системы комплемента, полисахаридами бактерий, антигенами плесневых грибов, аллергенами домашней пыли и др.

Эозинофилы. Эозинофилы обладают антитоксическими свойствами. Они способны адсорбировать токсины на своей поверхности, нейтрализовывать их или транспортировать к органам выделения.

Эозинофилы выделяют различные БАВ, большинство из которых по своим эффектам противоположны веществам, секретируе- мым базофилами и тучными клетками. Эозинофилы содержат ги- стаминазу - фермент, разрушающий гистамин, а также тормозят дальнейшее выделение гистамина базофилами. Эозинофилы способствуют свертыванию крови в отличие от базофилов. Установлено, что они фагоцитируют гранулы, выделяемые тучными клетками, в межклеточных пространствах. Все это позволяет организму снизить интенсивность аллергических реакций, защитить собственные ткани.

Миграцию эозинофилов из крови в ткани стимулируют ба- зофилы и тучные клетки, а также лимфокины, простагланди- ны, фактор активации тромбоцитов и иммуноглобулин Е. В свою очередь, эозинофилы стимулируют дегрануляцию базофилов и тучных клеток.

Уменьшение числа эозинофилов в крови (эозинопения) часто наблюдается при стрессах различной этиологии, оно обусловлено активацией гипофизарно-надпочечниковой системы. Увеличение числа эозинофилов (эозинофилия) отмечается при всех случаях интоксикации и при аллергических реакциях (в сочетании с базофилией).

Нейтрофилы. Нейтрофилы характеризуются высокой способностью к самостоятельному амебовидному передвижению, очень быстро переходят из крови в ткани и обратно, мигрируют по межклеточным пространствам. Они обладают хемотаксисом, то есть способностью двигаться в сторону химического или биологического раздражителя. Поэтому при попадании в организм микробных клеток, или продуктов их жизнедеятельности, или каких-то посторонних тел их прежде всего атакуют нейтрофилы. Передвижение нейтрофилов обеспечивают контрактильные (сократительные) белки - актин и миозин, находящиеся в их цитоплазме.

Нейтрофилы содержат ферменты, расщепляющие белки, жиры и углеводы. Благодаря набору активных ферментов нейтрофилы выполняют одну из главнейших функций - фагоцитоз. За открытие фагоцитоза великий русский ученый И. И. Мечников был удостоен Нобелевской премии. Сущность фагоцитоза заключается в том, что нейтрофилы устремляются навстречу чужеродной клетки, прилипают к ней, втягивают вместе с частью мембраны внутрь и подвергают внутриклеточному перевариванию. В процессе фагоцитоза участвуют щелочная и кислая фосфатаза, катепсин, лизоцим, миелопероксидаза. Нейтрофилы фагоцитируют не только микроорганизмы, но и иммунные комплексы, образовавшиеся при взаимодействии антигена с антителом.

Фагоцитоз - это борьба не только с патогенными микроорганизмами, но и способ освобождения организма от собственных отмерших и мутантных клеток. Путем фагоцитоза происходит перестройка тканей организма, когда уничтожаются ненужные клетки (например, перестройка костных трабекул). Удаление неполноценных эритроцитов, избытка яйцеклеток или спермиев также происходит путем фагоцитоза. Таким образом, фагоцитоз проявляется постоянно в живом организме как способ сохранения гомеостаза и как одна из стадий физиологической регенерации тканей.

Важное значение нейтрофилов заключается также в выработке различных биологически активных веществ (БАВ). Эти вещества повышают проницаемость капилляров, миграцию других клеток крови в ткани, стимулируют кроветворение, рост и регенерацию тканей. Нейтрофилы вырабатывают бактерицидные, антитоксические и пирогенные вещества (пирогены - вещества, повышающие температуру тела, они вызывают лихорадочную реакцию при инфекционных или воспалительных заболеваниях). Нейтрофилы участвуют в свертывании крови и в фибринолизе.

Рассмотрим функции агранулоцитов - лимфоцитов и моноцитов.

Лимфоциты. Лимфоциты образуются в красном костном мозге, но на ранней стадии развития часть их покидает костный мозг и попадает в тимус, а часть - в фабрициеву сумку у птиц или ее аналоги у млекопитающих (предположительно- лимфатические узлы кишечника, миндалины). В этих органах происходит дальнейшее созревание и «обучение» лимфоцитов. Под обучением понимают приобретение мембраной лимфоцитов специфических рецепторов, чувствительных к антигенам определенных видов микроорганизмов или чужеродных белков.

Таким образом, лимфоциты становятся неоднородными по своим свойствам и функциям. Различают три основные популяции лимфоцитов: Т-лимфоциты (тимусзависимые), созревающие в тимусе, или вилочковой железе; В-лимфоциты (бурсазависи- мые), созревающие в фабрициевой сумке у птиц и в лимфоидной ткани у млекопитающих; 0-лимфоциты (нулевые), которые могут превращаться и в Т- и В-лимфоциты.

Т-лимфоциты после созревания в тимусе расселяются в лимфоузлах, селезенке или циркулируют в крови. Они обеспечивают клеточные реакции иммунитета. Т-лимфоциты неоднородны, среди них имеется несколько субпопуляций:

Т-хелперы (англ, help - помогать) - взаимодействуют с В-лим- фоцитами, превращают их в плазматические клетки, вырабатывающие антитела;

Т-супрессоры (англ, supress - подавлять) - понижают активность В-лимфоцитов, препятствуют их чрезмерной реакции;

Т-киллеры (англ, kill - убивать) - клетки-убийцы; разрушают чужеродные клетки, трансплантаты, опухолевые клетки, мутантные клетки и, таким образом, благодаря цитотоксическим механизмам сохраняют генетический гомеостаз.

Клетки иммунной памяти - хранят в памяти встреченные в течение жизни организма антигены, т. е. имеют на мембране рецепторы к ним. Согласно данным, эти клетки долгоживущие; у крыс, например, они сохраняются в течение всей их жизни.

Основная функция В-лимфоцитов - выработка антител, т. е. защитных иммуноглобулинов. Иммуноглобулины находятся на поверхности клеточных мембран В-лимфоцитов и выполняют роль рецепторов, связывающих антигены. Известно, что и Т-лимфоци- ты также имеют на своей поверхности иммуноглобулины.

Моноциты. Моноциты обладают высокой фагоцитарной активностью. Часть их мигрирует из крови в ткани и превращается в тканевые макрофаги. Они очищают кровяное русло, разрушают живые и погибшие микроорганизмы, уничтожают обломки тканей и отмершие клетки организма. Цитотоксическое действие моноцитов обусловлено наличием ферментов - миелопероксидазы и др.

Существенную роль играют моноциты в организации иммунного ответа. Моноциты, взаимодействуя своими рецепторами с антигеном, образуют комплекс (моноцит + антиген), в котором антиген распознается Т-лимфоцитами. Таким образом, значение моноцитов в иммунных реакциях заключается и в фагоцитозе, и в презентации, или в представлении антигена Т-лимфоцитам.

Моноциты участвуют в регенерации тканей, а также в регуляции гемопоэза, стимулируя образование эритропоэтинов и простаглан- динов. Моноциты секретируют до 100 БАВ, в том числе интерлейкины-1, пирогены и вещества, активирующие фибробласты, идр.

Лейкоцитарная формула, или лейкограмма. Лейкоцитарная формула - это содержание в крови отдельных классов лейкоцитов. Лейкоцитарная формула крови показывает количество базофилов, эозинофилов, нейтрофилов, лимфоцитов и моноцитов в процентах, т. е. на 100 клеток всех лейкоцитов. Зная процент каждого вида лейкоцитов и их общее содержание в крови, можно вычислить количество отдельных классов лейкоцитов в 1 л крови.

Лейкограмма может быть двух типов: нейтрофильная и лимфоцитарная. Нейтрофильная формула, или нейтрофильный характер крови, характерна для лошадей, собак и многих других видов животных с однокамерным желудком: содержание нейтрофилов от 50 до 70 %. У жвачных животных в крови преобладают лимфоциты (от 50 до 70 %), и такой тип лейкограммы называется лимфоцитарным. У свиней примерно равное количество нейтрофилов и лимфоцитов, их лейкограмма имеет переходный тип.

При анализе лейкоцитарной формулы следует учитывать возраст животных. Так, у телят первых месяцев жизни, когда преджелудки еще недостаточно функционируют, лейкограмма имеет нейтрофильный характер. Увеличение числа нейтрофилов сверх нормы возможно у лошадей после изнурительной работы.

При заболеваниях соотношение между лейкоцитами может изменяться, при этом увеличение процента одного класса лейкоцитов сопровождается уменьшением других. Так, при нейт- рофилии обычно наблюдается лимфопения, а при лимфоцито- зе - нейтропения и эозинофилия; возможны и другие варианты. Поэтому для постановки диагноза необходимо учитывать и общее число лейкоцитов в крови, и лейкоцитарную формулу, а гематологические показатели сопоставить с клиническими проявлениями заболевания.

Тромбоциты, или кровяные пластинки, образуются из мега- кариоцитов костного мозга в результате отшнуровки частиц цитоплазмы.

Число тромбоцитов в крови животных может колебаться в больших пределах - от 200 до 600 Г/л: у новорожденных их больше, чем у взрослых; днем их содержится больше, чем ночью. Значительный тромбоцитоз, т. е. увеличенное содержание тромбоцитов в крови, отмечается при мышечной нагрузке, после приема корма и при голодании. Продолжительность жизни тромбоцитов от 4 до 9 сут.

Свойства и функции тромбоцитов. Тромбоциты участвуют во всех реакциях гемостаза. Прежде всего с их непосредственным участием формируется тромбоцитарный, или микроциркуляционный, тромб. В тромбоцитах находится белок - тромбостенин, способный сокращаться подобно актомиозину мышечных клеток. При сокращении тромбостенина тромбоцит вместо дисковидной формы принимает сферическую, покрывается «щетиной» выростов - псевдоподий, что увеличивает контактную поверхность клеток и способствует их взаимодействию между собой. Происходит агрегация тромбоцитов, т. е. скопление их большого числа. Такие агрегаты можно увидеть в мазке, если кровь предварительно простояла какое-то время в пробирке. Если же мазок сделан из свежевыпущенной капли крови (при проколе кровеносного сосуда), то тромбоциты располагаются по отдельности между другими клетками крови. Агрегация тромбоцитов - процесс обратимый, при расслаблении тромбостенина тромбоциты снова приобретают дисковидную форму.

Тромбоциты обладают адгезивностью (клейкостью). Они способны распластываться и приклеиваться к чужеродной поверхности, друг к другу, к сосудистой стенке. Адгезия - необратимый процесс, склеившиеся тромбоциты разрушаются. Адгезивность тромбоцитов повышается при беременности, травмах, хирургических вмешательствах; организм как бы заранее начинает готовиться к борьбе с возможными кровотечениями.

Из разрушенных склеившихся тромбоцитов выделяются тром- боцитарные факторы свертывания крови, участвующие в образовании протромбиназы и ретракции кровяного сгустка, а также вызывающие сокращение кровеносного сосуда.

Функции тромбоцитов не ограничиваются только гемостазом. Ежедневно около 15 % тромбоцитов прилипают к эндо- телиоцитам и изливают в них свое содержимое, за это их называют «кормильцами» эндотелия сосудов. Очевидно, эндотелиальные клетки не могут в достаточном количестве извлекать необходимые им вещества из плазмы крови. Если лишить их тромбоцитарной «подкормки», то они быстро подвергаются дистрофии, становятся ломкими и начинают пропускать макромолекулы и даже эритроциты.

Тромбоциты содержат в своем составе железо, медь, дыхательные ферменты и могут наряду с эритроцитами транспортировать в крови кислород. Это приобретает значение в тех случаях, когда организм находится в состоянии значительной гипоксии - при максимальной физической нагрузке, низком содержании кислорода в воздухе. Есть данные, что тромбоциты способны к фагоцитозу. Они синтезируют так называемый тромбоцитарный фактор роста, ускоряющий регенеративные процессы в тканях. Однако основная функция тромбоцитов - предотвращение или остановка кровотечения, а все остальные - резервные, дополняющие роль эритроцитов или лейкоцитов.

Кроветворение, или гемопоэз, - это процессы размножения (пролиферации), дифференцировки (специализации) и созревания форменных элементов крови. Число форменных элементов в крови у здоровых животных колеблется в небольших пределах и быстро восстанавливается до физиологического благодаря регуляции процессов кроветворения, кроверазрушения и перераспределения крови между кровяными депо и циркулирующей кровью.

В эмбриональном периоде первые кроветворные очаги появляются в желточном мешке; затем, по мере закладки и развития внутренних органов, кроветворение происходит в печени, селезенке, тимусе, лимфатических узлах, костном мозге. После рождения все клетки крови образуются только в красном костном мозге, а экстрамедуллярное кроветворение (вне костного мозга) может наблюдаться при заболеваниях.

Кроветворный костный мозг расположен главным образом в плоских костях - в грудной кости, костях таза, в ребрах, отростках позвонков, в черепных костях. У молодых животных кроветворный аппарат находится и в трубчатых костях, но в дальнейшем он, начиная со средней части кости, замещается желтым (жировым) костным мозгом и очаги кроветворения сохраняются только в эпифизах (головках), а у старых животных гемопоэз в трубчатых костях отсутствует.

Все клетки крови происходят из одной клетки костного мозга - стволовой клетки. Эти клетки называются полипотентны- ми, т. е. клетками разных возможностей (греч. poly - наибольший, potentia - способность, потенция). Стволовые полипотент- ные клетки (СПК) пребывают в неактивном состоянии и начинают размножаться в тех случаях, когда необходима регенерация клеток крови. Из стволовых клеток в ходе их дальнейшей дифференцировки развиваются все клетки крови - эритроциты, лейкоциты и тромбоциты.

Стволовые клетки окружены ретикулярными клетками, фибробластами, ретикулиновыми волокнами. Здесь же находятся макрофаги, эндотелиальные клетки кровеносных сосудов. Все эти клетки и волокна формируют так называемое микроокружение стволовых клеток. Микроокружение, или ниша стволовых клеток, в одних случаях ограждает СПК от дифференцирующих стимулов и тем самым способствует их самоподдержанию в неактивном состоянии или, наоборот, оказывает влияние на дифференцировку СПК в направлении миелопоэза или лимфопоэза.

В периферической крови стволовые клетки присутствуют в очень небольшом количестве, примерно 0,1 % от всех стволовых клеток костного мозга. Выявление их в крови методически сложное не только из-за малого числа, но и потому, что морфологически они очень похожи на лимфоциты. Физиологическое значение циркуляции в крови стволовых клеток, очевидно, заключается в том, чтобы равномерно заселить ими костный мозг, участки которого анатомически разобщены.

В регуляции кроветворения участвуют нервные и гуморальные механизмы. Еще в работах С. П. Боткина и И. П. Павлова было доказано влияние ЦНС на клеточный состав крови. В частности, хорошо известны факты условно-рефлекторного эритроцитоза или лейкоцитоза. Следовательно, на кроветворение оказывает влияние кора больших полушарий. Единый центр кроветворения (по аналогии с пищевым или дыхательным) не обнаружен, но большое значение в регуляции гемопоэза отводится гипоталамусу - отделу промежуточного мозга.

В кроветворных органах имеется большое число нервных волокон и нервных окончаний, осуществляющих двустороннюю связь кроветворного аппарата с ЦНС. Поэтому нервная система оказывает прямое влияние на размножение, созревание клеток и на разрушение лишних клеток.

Влияние ЦНС на кроветворение осуществляется через вегетативную нервную систему. Как правило, симпатическая нервная система стимулирует кроветворение, а парасимпатическая - угнетает.

Помимо прямого контроля за деятельностью костного мозга ЦНС влияет на кроветворение через образование гуморальных факторов. Под воздействием нервных импульсов в тканях некоторых органов образуются гемопоэтины - гормоны белковой природы. Гемопоэтины воздействуют на микроокружение СПК, определяя их дифференцировку. Различают несколько видов гемопоэ- тинов - эритропоэтины, лейкопоэтины, тромбоцитопоэтины. По своим функциям гемопоэтины относятся к цитомединам - веществам, осуществляющим контакт между клетками. Кроме гемо- поэтинов в регуляции гемопоэза участвуют и другие биологически активные вещества - как эндогенные, образующиеся в организме, так и экзогенные, поступающие из внешней среды. Такова общая схема регуляции гемопоэза. В механизме регуляции числа отдельных видов клеток крови имеются особенности.

Регуляция эритропоэза. Постоянно действующим физиологическим регулятором эритропоэза является эритропоэтин.

У здорового животного, если ему ввести плазму крови от другого животного, перенесшего кровопотерю, возрастает число эритроцитов в крови. Это объясняется тем, что после крово- потери уменьшается кислородная емкость крови и возрастает выработка эритропоэтина, который и активизирует эритропоэз костного мозга.

Эритропоэтин образуется в почках и активизируется при взаимодействии с глобулином крови, который образуется в печени. Образование эритропоэтина стимулируется при уменьшении содержания кислорода в тканях - например, при кровопотере, при длительном нахождении животных в условиях пониженного барометрического давления, при систематических тренировках спортивных лошадей, а также при заболеваниях, связанных с нарушением газообмена. Стимуляторами эритропоэза являются продукты распада эритроцитов, кобальт, мужские половые гормоны.

В организме имеются также ингибиторы эритропоэтина - вещества, подавляющие его выработку. Ингибитор эритропоэтина активизируется при повышенном содержании кислорода в тканях - например, снижение числа эритроцитов в крови у высокогорных жителей после попадания в местность на уровне моря. Ингибитор эритропоэтина обнаружен у новорожденных в первые дни и недели жизни, вследствие чего число эритроцитов у них снижается до уровня взрослого животного.

Таким образом, выработка эритроцитов регулируется посредством колебания содержания кислорода в тканях путем обратной связи, а реализуется этот процесс через образование эритропоэтина, его активацию или ингибирование.

Довольно значительна в эритропоэзе роль кормовых факторов. Для полноценного эритропоэза необходимо достаточное содержание в кормах белков, аминокислот, витаминов В 2 , В 6 , В 12 , фолиевой кислоты, аскорбиновой кислоты, железа, меди, магния, кобальта. Эти вещества входят либо в гемоглобин, либо в состав ферментов, участвующих в его синтезе.

Витамин В 12 называют внешним фактором кроветворения, так как он поступает в организм с кормом. Для его усвоения необходим внутренний фактор - муцин (гликопротеид) желудочного сока. Роль муцина заключается в защите молекул витамина В 12 от разрушения микроорганизмами, заселяющими кишечник. Совокупность витамина В 12 и муцина желудочного сока называют «фактор Боткина - Касла» - по фамилиям ученых, открывших этот механизм.

Регуляция лейкопоэза. Пролиферацию и дифференцировку лейкоцитов индуцируют лейкопоэтины. Это тканевые гормоны, которые образуются в печени, селезенке, почках. В чистом виде они пока не выделены, хотя известно об их неоднородности. Среди них различают эозинофилопоэтины, базофилопоэтины, нейтрофилопоэтины, моноцитопоэтины. Каждый вид лейко- поэтинов стимулирует лейкопоэз специфично - в направлении увеличения образования эозинофилов, базофилов, нейтрофилов или моноцитов. Главным регулятором образования и дифференцировки Т-лимфоцитов является гормон тимуса - тимопоэтин.

Не вызывает сомнения также то, что в организме образуются стимуляторы и ингибиторы лейкопоэтинов. Они находятся между собой в определенных взаимоотношениях для поддержания баланса между отдельными классами лейкоцитов (например, между нейтрофилами и лимфоцитами).

Продукты распада лейкоцитов стимулируют образование новых клеток того же класса. Поэтому чем больше клеток разрушается в ходе защитных реакций, тем больше новых клеток выходит из кроветворных органов в кровь. Так, при образовании гнойника (абсцесса) в пораженном участке скапливается большое количество нейтрофилов, осуществляющих фагоцитоз. Значительная часть нейтрофилов при этом погибает, из клеток выделяются различные вещества, в том числе и те, которые стимулируют образование новых нейтрофилов. В результате в крови наблюдается высокая ней- трофилия. Это - защитная реакция организма, направленная на усиление борьбы с патогенным агентом.

В регуляции лейкопоэза участвуют железы внутренней секреции - гипофиз, надпочечники, половые железы, тимус, щитовидная железа. Например, адренокортикотропный гормон гипофиза вызывает снижение содержания эозинофилов в крови вплоть до полного их исчезновения и увеличивает количество нейтрофилов. Такое явление часто наблюдается у здоровых животных в условиях длительного стресса.

Регуляция тромбоцитопоэза. Число тромбоцитов в крови, так же как и других форменных элементов, регулируется нейрогумораль- ными механизмами. Гуморальные стимуляторы называются тром- боцитопоэтинами, они ускоряют образование мегакариоцитов в костном мозге из их предшественников, а также их пролиферацию и созревание.

При различных экспериментальных исследованиях и клинических наблюдениях за больными обнаружены и ингибиторы образования тромбоцитов. Очевидно, только при уравновешивании воздействий стимуляторов и ингибиторов поддерживается оптимальный уровень образования тромбоцитов и их содержания в периферической крови.

Итак, у здоровых животных поддерживается постоянное число форменных элементов в крови, но при различных физиологических состояниях или при внешних воздействиях в организме может изменяться концентрация отдельных клеток или их соотношение. Эти изменения происходят либо быстро, путем перераспределения имеющегося запаса клеток между органами и тканями, либо медленно, но более продолжительно во времени - благодаря изменению скорости кроветворения.