Главная · Спорт и Фитнес · Прямые лежащие в перпендикулярных плоскостях. Перпендикулярность прямых в пространстве. Визуальный гид (2019)

Прямые лежащие в перпендикулярных плоскостях. Перпендикулярность прямых в пространстве. Визуальный гид (2019)

В планиметрии построение перпендикуляра основано на том, что он соединяет данную точку и точку, симметричную с ней относительно рассматриваемой прямой. Если мы хотим составить понятие о перпендикуляре к плоскости, то можно взять любую точку, лежащую вне этой плоскости, отразить эту точку в данной плоскости, как в зеркале, и соединить данную точку с ее отражением; тогда получим перпендикуляр к плоскости. Следует, однако, заметить, что в случае отражения относительно прямой все дело сводилось к сгибу плоскости вдоль данной прямой, т. е. к движению, хотя и производимому в пространстве. Отражение же в плоскости уже не сводится к движению. Поэтому изложение вопроса о перпендикуляре к плоскости сложнее соответствующего изложения вопроса о перпендикуляре к прямой в планиметрии, оно опирается на следующее известное читателю

Определение. Прямая называется перпендикуляром к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Так как угол между двумя скрещивающимися прямыми равен по определению углу между пересекающимися прямыми, параллельными данным, то прямая а (рис. 337), перпендикулярная ко всем прямым плоскости К, проходящим через точку пересечения прямой а с плоскостью К, будет перпендикулярна и к плоскости К. Действительно, она образует прямой угол с любой прямой в плоскости так как она перпендикулярна к прямой b, проведенной в этой плоскости через точку параллельно b.

В действительности имеет место гораздо более простой Признак перпендикулярности прямой и плоскости. Прямая, перпендикулярная к двум пересекающимся прямым плоскости, перпендикулярна к этой плоскости.

Доказательство. Пусть на рис. 338 прямая а перпендикулярна к двум пересекающимся прямым , лежащим в плоскости Х. В силу сделанного выше замечания мы можем, не нарушая общности, предположить, что прямая а проходит через точку пересечения прямых тип. Требуется доказать, что прямая а перпендикулярна и к любой прямой плоскости в силу того же замечания можно предположить, что прямая проходит через точку . Сделаем следующие вспомогательные построения: на прямой а возьмем произвольную точку М и точку М на продолжении по другую сторону плоскости Я на расстоянии от точки Три прямые в плоскости X пересечем какой-либо прямой с, не проходящей через точки пересечения обозначим соответственно Р, Q, R. Соединим точки М и М с точками Р, Q, R. Треугольники равны, так как они прямоугольные, катеты равны по построению, а катет общий; значит, равны и их гипотенузы: (можно еще проще заметить, что МР - МР, как наклонные с равными проекциями). Отрезки MQ, MQ также равны. Значит, равны треугольники MPQ и MPQ (по трем сторонам). Отсюда заключаем, что равны треугольники MQR и у них между равными сторонами MQ и MQ и общей стороной QR заключены равные углы: (соответственные углы в равных треугольниках). Теперь уже видно, что равны и треугольники трем сторонам). Таким образом, углы MMUR и равны, и так как они смежные, то каждый из них прямой. Утверждение доказано.

К любой прямой можно провести перпендикулярную плоскость.

В самом деле, возьмем произвольную прямую и в любой ее точке проведем к ней два каких-либо перпендикуляра (лежащие в каких-либо двух плоскостях, проведенных через эту прямую). Через них, как через две пересекающиеся прямые, проходит плоскость. По предыдущему, данная прямая служит перпендикуляром к этой плоскости.

Из проведенных рассуждений также следует вывод: все прямые, перпендикулярные к данной прямой в одной из ее точек, лежат в одной плоскости, перпендикулярной к этой прямой.

В любой точке плоскости также можно восставить перпендикуляр к ней.

Для этого достаточно провести через данную в плоскости точку две прямые, лежащие в этой плоскости, а затем построить в той же точке две плоскости, перпендикулярные к проведенным прямым. Имея общую точку, эти две плоскости пересекутся по прямой, которая будет одновременно перпендикулярна к двум пересекающимся прямым в плоскости и, следовательно, перпендикулярна к самой плоскости.

ГПОУ «Усинский политехнический техникум»

Открытый урок по геометрии

Тема «Перпендикулярность прямой и плоскости».

Выполнил: преподаватель математики Мельникова Е.А.

Усинск, 2016 г.

Тип урока: Урок-семинар

Цели урока :

Обобщить, закрепить и систематизировать знания обучающихся по данной теме, умения применять эти знания при решении задач; показать практическую значимость изучаемого материала; изучить связь между отношениями параллельности и перпендикулярности в пространстве; показать межпредметную связь.

Воспитывать культуру устной и письменной речи, способствовать воспитанию эстетического вкуса, прививать интерес к предмету математики.

Развивать пространственное и логическое мышление.

Оборудование к уроку: карточки с названиями Теоретики, Практики, Исследователи, задания группам, ПК, проектор.

План урока.

I. Организация учащихся.

Обучающимся предлагаются карточки с названиями Теоретики, Практики, Исследователи и производится деление на 3 группы.

II. Постановка целей и задач урока.

Говорят, что математика- наука неинтересная, что математика - сухая наука, что о ней можно говорить только в кабинете математики, на уроке. Нет, жизнь доказывает обратное: математика повсюду вокруг нас. Послушайте, что пишет об этом Роман Бухараев в стихотворении “Геометрия трав”.

Математик несбывшийся, странник,
Оглянись, удивляясь стократ:
В травах - срез волчеца - пятигранник,
А в сеченьи душицы - квадрат.
Все на свете покажется внове
Под гольцом, чья вершина в снегу:
Водосбор - треуголен в основе
На цветущем альпийском лугу!
Где же круг?
Возле иглистой розы.
Там, где луг поднебесный скалист,
Вижу, с ветром играет березы
Треугольно-ромбический лист.

Но я соглашусь с тем, что математика наука точная, требующая четкости определений и доказательства фактов. И поэтому сейчас предлагаю от лирики перейти к практике.

Вы изучили очень важную тему геометрии “Перпендикулярность прямой и плоскости”. В результате изучения этой темы вы должны:

знать определения перпендикулярных прямых и прямой, перпендикулярной к плоскости.

уметьформировать и доказывать теоремы (прямую и обратную) о параллельных прямых, прямых, перпендикулярных к плоскости, признак перпендикулярности прямой и плоскости, теорему о прямой, перпендикулярной к плоскости.

Решать задачи типа 119, 121, 126, 128, 131 (уч. “Геометрия 10-11”, автор Атанасян Л.С.)

Преподаватель знакомит с целями урока.

III. Закрепление знаний и умений.

На уроке будут работать 3 группы «Теоретики», «Практики», «Исследователи».

Преподаватель дает задание группам, приготовленное на листах. Указывает на порядок оценивания.

Перед началом работы групп фронтальная проверка готовности.

Каково может быть взаимное расположение 2-х прямых в пространстве? (Прямые могут пересекаться, скрещиваться и быть параллельными.)

Какие две прямые называют параллельными? (Параллельные прямые называются прямые , которые лежат в одной плоскости и либо совпадают, либо не пересекаются.)

Какие две прямые называют скрещивающимися? (Прямые называются скрещивающимися, если одна из прямых лежит в плоскости, а другая эту плоскость пересекает в точке не принадлежащей первой прямой.)

Если угол между двумя прямыми 900 , как их называют? (Перпендикулярные прямые)

Какую прямую называют перпендикулярной к плоскости? (Прямая называется перпендикулярной к плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

Верно ли утверждение:

a) Любая прямая перпендикулярная к плоскости, пересекает эту плоскость? (верно)
b) Любая прямая, пересекающая плоскость, перпендикулярна к этой плоскости? (неверно)
c) Если прямая не перпендикулярна к данной плоскости, то она не пересекает эту плоскость? (неверно)

Прямая а параллельна прямой в и не пересекает плоскость?. Может ли прямая в быть перпендикулярной к плоскости? Ответ обоснуйте. (не может быть, т.к если прямая в будет перпендикулярной плоскости, то и прямая а тоже перпендикулярна плоскости, что невозможно, т.к по условию прямая а не пересекает плоскость, следовательно она параллельна плоскости)

1. Задания для группы «Теоретики».

Доказать лемму о перпендикулярности двух параллельных прямых к третьей прямой.

Лемма . Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Дано:a ‖ b, a ⊥ c

Доказать: b ⊥ c

Доказательство:

Через точку М пространства, не лежащую на данных прямых, проведем прямые МА и МС, параллельные соответственно прямым а и с. Так как а ⊥ с, то ∠ АМС=90о.

По условию, b ‖ a, а по построению а ‖ МА, поэтому b ‖ МА.

Итак, прямые b и с параллельны соответственно прямым МА и МС, угол между ними равен 90о, т.е. b ‖ МА, с ‖ МС, угол между МА и МС равен 90о

Это означает, что угол между прямыми b и с также равен 90о, то есть b ⊥ с. Лемма доказана.

Доказать теоремы (прямую и обратную) о параллельных прямых, прямых, перпендикулярных к плоскости.

Теорема: (прямая) Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Запись на доске и в тетрадях:

Дано: а ‖ а1, а ⊥ α

Доказать, что а1 ⊥ α

Доказательство:

Проведем какую-нибудь прямую x в плоскости α, т.е. x ∊ α.Так как а ⊥ α, то а ⊥ x.

По лемме о перпендикулярности двух параллельных прямых к третьей а1 ⊥ x.

Таким образом, прямая а1 перпендикулярна к любой прямой, лежащей в плоскости α, т. е. а1 ⊥ α. Теорема доказана.

Теорема: (обратная) Если две прямые перпендикулярны к плоскости, то они параллельны.

Дано: а ⊥ α, b ⊥ α

Доказать, что а ‖ b

Доказательство:

Через какую-нибудь точку М прямой b проведем прямую b1, параллельную прямой а.

М ∊ b, M ∊ b1, b1 ‖ a. По предыдущей теореме b1 ⊥ α.

Докажем, что прямая b1 совпадает с прямой b. Тем самым будем доказано, что а ‖ b. Допустим, что прямые b1 и b не совпадают. Тогда в плоскости β, содержащей прямые b и b1, через точку М проходят две прямые, перпендикулярные к прямой с, по которой пересекаются плоскости α и β. Но это невозможно, следовательно, а ‖ b, т.е. b ∊ β, b1 ∊β, α β=c (невозможно)→ а ‖ b.

Сформировать и провести анализ доказательства признака перпендикулярности прямой и плоскости.

Признак перпендикулярности прямой и плоскости: Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна и самой плоскости

По окончании группы «Теоретики» преподаватель предоставляет слово обучащемуся с исторической справкой «Провешивание прямой».

Для проведения длинных отрезков прямых (при прокладывании трассы шоссейной или железной дороги, линий электропередач и т.д.) применяется способ, называемый провешиванием прямой, который заключается в использовании всех - шестов, имеющих длину около 2 м., заостренных с одного конца для того, чтобы их можно было воткнуть в землю. Если нужно провести прямую линию между двумя точками А и В, положение которых дано, то сначала в этих точках ставятся вехи; затем между ними устанавливается промежуточная веха С так, чтобы веха А и С закрывали веху В. Необходимо, чтобы все вехи стояли вертикально. Правильность вертикального направления проверяется с помощью отвеса. Отвес - это шнур, на конце которого укреплен небольшой груз. Казалось бы, в этой простой процедуре провешивания прямой все ясно. Но и здесь есть много вопросов, о которых следует подумать, а ответы на них дают изучение нашего курса и других дисциплин. Во-первых, почему все отвесы мира смотрят в центр Земли, а с точки зрения геометрии- определяют прямую, перпендикулярную ее поверхности? Во-вторых, веха должна быть параллельна отвесу, и тогда она также будет перпендикулярна поверхности Земли. Таким образом, все вехи перпендикулярны поверхности Земли и, значит, параллельны между собой.

Такой способ получил название провешивание прямой на местности. Слово "провешивание" - производное от слова "веха".

2. Задания для группы «Практики» .

Показать применение теории при решении задач № 126, 127, 128,131 (стр. 42 уч. “Геометрия 10-11 автор Атанасян Л.С.)

3. Задания для группы «Исследователи».

Изучить связь между отношениями параллельности и перпендикулярности в пространстве. Проверку осуществить с помощью таблицы.

Даны прямая а, перпендикулярная к плоскости α, и прямая b. Укажите взаимное расположение прямых а и b:

Если b параллельна , то……

Если b перпендикулярна , то ……

Если b параллельна или принадлежит , то…..

Если b перпендикулярна , то……

Даны прямая а, перпендикулярная к плоскости α, и плоскость .

Если параллельна , то……

Если перпендикулярна , то ……

Если параллельна а или а принадлежит , то…..

Если перпендикулярна , то……

Приведите примеры окружающей нас обстановки, иллюстрирующие перпендикулярность прямой и плоскости.

По окончании работы групп учащиеся приводят примеры расположения прямых в задачах по физике (межпредметная связь)

Вспомните о силе давления. Как она направлена? (Перпенд. плоскости поверхности).

Тело на горизонтальной поверхности. Как на любое тело на него действует сила тяжести mg? Каково ее направление?

Тело опущено в жидкость. На него оказывает действие выталкивающая сила. Каково ее направление?

IV. Подведение итогов урока. Выставление оценок.

V . Домашнее задание.

П.15 - 16, вопросы 1, 2 (стр. 57), №116, 118.

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости.
В начале урока вспомним определение прямой, перпендикулярной к плоскости. Далее рассмотрим и докажем теорему-признак перпендикулярности прямой и плоскости. Для доказательства этой теоремы вспомним свойство серединного перпендикуляра.
Далее решим несколько задач на перпендикулярность прямой и плоскости.

Тема: Перпендикулярность прямой и плоскости

Урок: Признак перпендикулярности прямой и плоскости

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости .

Определение . Прямая а называется перпендикулярной к плоскости α, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Доказательство .

Пусть нам дана плоскость α. В этой плоскости лежат две пересекающиеся прямые p и q . Прямая а перпендикулярна прямой p и прямой q . Нам нужно доказать, что прямая а перпендикулярна плоскости α, то есть, что прямая а перпендикулярна любой прямой, лежащей в плоскости α.

Напоминание .

Для доказательства нам нужно вспомнить свойства серединного перпендикуляра к отрезку. Серединный перпендикуляр р к отрезку АВ - это геометрическое место точек, равноудаленных от концов отрезка. То есть, если точка С лежит на серединном перпендикуляре р, то АС = ВС .

Пусть точка О - точка пересечения прямой а и плоскости α (рис. 2). Без ограничения общность, будем считать, что прямые p и q пересекаются в точке О . Нам нужно доказать перпендикулярность прямой а к произвольной прямой m из плоскости α.

Проведем через точку О прямую l , параллельно прямой m. На прямой а отложим отрезки ОА и ОВ , причем ОА = ОВ , то есть точка О - середина отрезка АВ . Проведем прямую PL , .

Прямая р перпендикулярна прямой а (из условия), (по построению). Значит, р АВ . Точка Р лежит на прямой р . Значит, РА = РВ .

Прямая q перпендикулярна прямой а (из условия), (по построению). Значит, q - серединный перпендикуляр к отрезку АВ . Точка Q лежит на прямой q . Значит, QА = .

Треугольники АР Q и ВР Q равны по трем сторонам (РА = РВ , QА = QВ, Р Q - общая сторона). Значит, углы АР Q и ВР Q равны.

Треугольники А PL и BPL равны по углу и двум прилежащим сторонам (∠АР L = ∠ВР L, РА = РВ , PL - общая сторона). Из равенства треугольников получаем, что AL = BL .

Рассмотрим треугольник ABL. Он равнобедренный, так как AL = BL. В равнобедренном треугольнике медиана является и высотой, то есть прямая перпендикулярна АВ .

Мы получили, что прямая а перпендикулярна прямой l, а значит, и прямой m, что и требовалось доказать.

Точки А, М, О лежат на прямой, перпендикулярной к плоскости α, а точки О, В, С и D лежат в плоскости α (рис. 3). Какие из следующих углов являются прямыми: ?

Решение

Рассмотрим угол . Прямая АО перпендикулярна плоскости α, а значит, прямая АО перпендикулярна любой прямой, лежащей в плоскости α, в том числе прямой ВО . Значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой ОС , значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, . Рассмотрим треугольник DAO . В треугольнике может быть только один прямой угол. Значит, угол DAM - не является прямым.

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, .

Рассмотрим угол . Это угол в прямоугольном треугольнике BMO , он не может быть прямым, так как угол МОВ - прямой.

Ответ : .

В треугольнике АВС дано: , АС = 6 см, ВС = 8 см, СМ - медиана (рис. 4). Через вершину С проведена прямая СК , перпендикулярная к плоскости треугольника АВС , причем СК = 12 см. Найдите КМ .

Решение :

Найдем длину АВ по теореме Пифагора: (см).

По свойству прямоугольного треугольника середина гипотенузы М равноудалена от вершин треугольника. То есть СМ = АМ = ВМ , (см).

Рассмотрим треугольник КСМ . Прямая КС перпендикулярна плоскости АВС , а значит, КС перпендикулярна СМ . Значит, треугольник КСМ - прямоугольный. Найдем гипотенузу КМ из теоремы Пифагора: (см).

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 1, 2, 5, 6 стр. 57

2. Дайте определение перпендикулярности прямой и плоскости.

3. Укажите в кубе пару - ребро и грань, которые являются перпендикулярными.

4. Точка К лежит вне плоскости равнобедренного треугольника АВС и равноудалена от точек В и С . М - середина основания ВС . Докажите, что прямая ВС перпендикулярна плоскости АКМ .

Определение. Прямая пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна данной плоскости.
Доказательство. Пусть а – прямая перпендикулярная прямым b и с , принадлежащим плоскости a . А – точка пересечения прямых. В плоскости a через точку А проведем прямую d , не совпадающую с прямыми b и с . Теперь в плоскости a проведем прямую k , пересекающую прямые d и с и не проходящую через точку А. Точки пересечения соответственно D, В и С. Отложим на прямой а в разные стороны от точки А равные отрезки АА 1 и АА 2 . Треугольник А 1 СА 2 равнобедренный, т.к. высота АС является так же и медианой (признак 1), т.е. А 1 С=СА 2 . Подобно в треугольнике А 1 ВА 2 равны стороны А 1 В и ВА 2 . Следолвательно, треугольники А 1 ВС и А 2 ВС равны по третьему признаку Поэтому равны углы А 1 ВD и А 2 ВD. Значит, равны и треугольники А 1 ВD и А 2 ВD по первому признаку . Поэтому А 1 D и А 2 D. Отсюда треугольник А 1 DА 2 равнобедренный по определению. В равнобедренном треугольнике А 1 D А 2 D А – медиана (по построению), а значит и высота, то есть угол А 1 АD прямой, а значит прямая а перпендикулярна прямой d . Таким образом можно доказать, что прямая а перпендикулярна любой прямой проходящей через точку А и принадлежащей плоскости a . Из определения следует, что прямая а перпендикулярна плоскости a .

Построение прямой перпендикулярной данной плоскости из точки, взятой вне этой плоскости.
Пусть a - плоскость, А – точка, из которой надо опустить перпендикуляр. В плоскости проведем некоторую прямую а . Через точку А и прямую а проведем плоскость b (прямая и точка определяют плоскость, причем только одну). В плоскости b из точки А опустим на прямую а перпендикуляр АВ. Из точки В в плоскости a восстановим перпендикуляр и обозначим прямую, на которой лежит этот перпендикуляр за с . Через отрезок АВ и прямую с проведем плоскость g (две пересекающиеся прямые определяют плоскость, причем только одну). В плоскости g из точки А опустим на прямую с перпендикуляр АС. Докажем, что отрезок АС – перпендикуляр к плоскости b . Доказательство. Прямая а перпендикулярна прямым с и АВ (по построению), а значит она перпендикулярна и самой плоскости g , в которой лежат эти две пересекающиеся прямые (по признаку перпендикулярности прямой и плоскости). А раз она перпендикулярна этой плоскости, то она перпендикулярна и любой прямой в этой плоскости, значит прямая а перпендикулярна АС. Прямая АС перпендикулярна двум прямым, лежащим в плоскости α : с (по построению) и а (по доказанному), значит она перпендикулярна плоскости α (по признаку перпендикулярности прямой и плоскости)

Теорема 1 . Если две пересекающиеся прямые параллельны соответственно двум перпендикулярным прямым, то они тоже перпендикулярны.
Доказательство. Пусть а и b - перпендикулярные прямые, а 1 и b 1 - параллельные им пересекающиеся прямые. Докажем, что прямые а 1 и b 1 перпендикулярны.
Если прямые а , b , а 1 и b 1 лежат в одной плоскости, то они обладают указанным в теореме свойством, как это известно из планиметрии.
Допустим теперь, что наши прямые не лежат в одной плоскости. Тогда прямые а и b лежат в некоторой плоскости α , а прямые а 1 и b 1 - в некоторой плоскости β . По признаку параллельности плоскостей плоскости α и β параллельны. Пусть С - точка пересечения прямых а и b , а С 1 - пересечения прямых а 1 и b 1 . Проведем в плоскости параллельных прямых а и а а и а 1 в точках А и А 1 . В плоскости параллельных прямых b и b 1 прямую, параллельную прямой СС 1 . Она пересечет прямые b и b 1 в точках B и B 1 .
Четырехугольники САА 1 С 1 и СВВ 1 С 1 - параллелограммы, так как у них противолежащие стороны параллельны. Четырехугольник АВВ 1 А 1 также параллелограмм. У него стороны АА 1 и ВВ 1 параллельны, потому что каждая из них параллельна прямой СС 1 .Таким образом четырехугольник лежит в плоскости, проходящей через параллельные прямые АА 1 и ВВ 1 . А она пересекает параллельные плоскости α и β по параллельным прямые АВ и А 1 В 1 .
Так как у параллелограмма противолежащие стороны равны, то АВ=А 1 В 1 , АС=А 1 С 1 , ВС=В 1 С 1 . По третьему признаку равенства треугольники АВС и А 1 В 1 С 1 равны. Итак, угол А 1 С 1 В 1 , равный углу АСВ, прямой, т.е. прямые а 1 и b 1 перпендикулярны. Ч.т.д.

Свойства перпендикулярных прямой и плоскости.
Теорема 2 . Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Доказательство. Пусть а 1 и а 2 - две параллельные прямые и α - плоскость, перпендикулярна прямой а 1 . Докажем, что эта плоскость перпендикулярна и прямой а 2 .
Проведем через точку А 2 пересечения прямой а 2 с плоскостью α произвольную прямую с 2 в плоскости α . Проведем в плоскости α через точку А 1 пересечения прямой а 1 с плоскостью α прямую с 1 , параллельную прямой с 2 . Так как прямая а 1 перпендикулярна плоскости α , то прямые а 1 и с 1 перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а 2 и с 2 тоже перпендикулярны. Таким образом, прямая а 2 перпендикулярна любой прямой с 2 в плоскости α . А это значит, что прямая а 2 перпендикулярна плоскости α . Теорема доказана.

Теорема 3 . Две прямые, перпендикулярные одной и той же плоскости, параллельны между собой.
Имеем плоскость α и две перпендикулярные ей прямые а и b . Докажем, что а || b .
Через точки пересечения прямыми плоскости проведем прямую с . По признаку получаем а ^ c и b ^ c . Через прямые а и b проведем плоскость (две параллельные прямые определяют плоскость и притом только одну). В этой плоскости мы имеем два параллельные прямые а и b и секущую с . Если сумма внутренних односторонних углов равна 180 о, то прямые параллельны. У нас как раз такой случай - два прямых угла. Поэтому а || b .