Главная · Личностный рост · Технологии. Атомная энергетика России – локомотив для развития других отраслей

Технологии. Атомная энергетика России – локомотив для развития других отраслей

В настоящее время более 18% электроэнергии, вырабатываемой в мире, производится на ядерных реакторах, которые, к тому же, в отличие от электростанций, работающих на органическом топливе, не загрязняют атмосферу. Неоспоримый плюс ядерной энергии – ее стоимость, которая ниже, чем на большинстве электростанций иных типов. По разным оценкам, в мире насчитывается около 440 ядерных реакторов обшей мощностью свыше 365 тыс. МВт, которые расположены более чем в 30 странах.

Атомная энергетика является одним из основных мировых источников энергообеспечения. В 2000–2005 гг. в строй было введено 30 новых реакторов. Основные генерирующие мощности сосредоточены в Западной Европе и США.

Для обеспечения прогнозируемых уровней электро- и теплопотребления в максимальном варианте спроса необходим ввод генерирующих мощностей АЭС до 6 ГВт в текущем десятилетии (энергоблок 3 Калининской АЭС, энергоблок 5 Курской АЭС, энергоблок 2 Волгодонской АЭС, энергоблоки 5 и 6 Балаковской АЭС, энергоблок 4 Белоярской АЭС) и не менее 15 ГВт до 2020 года (с учетом воспроизводства энергоблоков первого поколения – 5,7 ГВт), а также до 2 ГВт АТЭЦ. В результате суммарная установленная мощность атомных станций России должна увеличиться до 40 ГВт при среднем КИУМ порядка 85% (уровень ведущих стран с развитой атомной энергетикой).

В соответствии с этим основными задачами развития атомной энергетики являются:

модернизация и продление на 10–20 лет сроков эксплуатации энергоблоков действующих АЭС;

повышение эффективности энергопроизводства и использования энергии АЭС;

создание комплексов по переработке радиоактивных отходов АЭС и системы обращения с облученным ядерным топливом;

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ
Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ

воспроизводство выбывающих энергоблоков первого поколения, в том числе путем реновации после завершения продленного срока их эксплуатации (при своевременном создании заделов);

расширенное воспроизводство мощностей (средний темп роста – примерно 1 ГВт в год) и строительные заделы будущих периодов;

освоение перспективных реакторных технологий (БН-800, ВВЭР-1500, АТЭЦ и др.) при развитии соответствующей топливной базы.

Важнейшими факторами развития атомной энергетики являются повышение эффективности выработки энергии на АЭС за счет снижения удельных затрат на производство (внутренние резервы) и расширение рынков сбыта энергии атомных станций (внешний потенциал).

К внутренним резервам АЭС (около 20% энерговыработки) относятся:

повышение НИУМ до 85% с темпом роста в среднем до 2% в год за счет окращения сроков ремонтов и увеличения межремонтного периода, удлинения топливных циклов, снижения числа отказов оборудования при его модернизации и реновации, что обеспечит дополнительное производство электроэнергии на действующих АЭС около 20 млрд кВтч в год (эквивалентно вводу установленной мощности до 3 ГВт при удельных капитальных затратах до 150 долл./кВт);

повышение КПД энергоблоков за счет улучшения эксплуатационных характеристик и режимов с дополнительной выработкой на действующих АЭС более 7 млрд кВтч в год (равноценно вводу мощности 1 ГВт при удельных капитальных затратах порядка 200 долл./кВт);

снижение производственных издержек, в том числе за счет сокращения расхода энергии на собственные нужды (до проектных значений, составляющих около 6%) и уменьшения удельной численности персонала.

Внешний потенциал – расширение действующих и создание новых рынков использования энергии и мощности АЭС (более 20% энерговыработки):

развитие производства тепловой энергии и теплоснабжения (в том числе создание АТЭЦ), электроаккумуляция тепла для теплоснабжения крупных городов, использование сбросного низкопотенциального тепла;

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ
перевод компрессорных станций газотранспортных систем общей мощностью более 3 ГВт на электропривод от АЭС, что обеспечит экономию газа более 7 млрд м3 в год;

развитие энергоемких производств алюминия, сжиженного газа, синтетического жидкого топлива, водорода с использованием энергии АЭС.

Достижение установленных параметров стратегического развития атомной энергетики России предусматривает реализацию:

потенциала максимального повышения эффективности АЭС, воспроизводства (реновации) и развития мощностей атомных станций;

долгосрочной инвестиционной политики в государственном атомноэнергетическом секторе экономики;

эффективных источников и механизмов достаточного и своевременного обеспечения инвестициями.

Потенциальные возможности, основные принципы и направления перспективного развития атомной энергетики России с учетом возможностей топливной базы определены Стратегией развития атомной энергетики России в первой половине XXI века, одобренной в 2000 году Правительством Российской Федерации.

Перспективы долгосрочного развития атомной энергетики связаны с реальной возможностью возобновления и регенерации ядерных топливных ресурсов без потери конкурентоспособности и безопасности атомной энергетики. Отраслевая технологическая политика предусматривает эволюционное внедрение в 2010–2030 годах новой ядерной энерготехнологий четвертого поколения на быстрых реакторах с замыканием ядерного топливного цикла и уран-плутониевым топливом, что снимает ограничения в отношении топливного сырья на обозримую перспективу.

Развитие атомной энергетики позволит оптимизировать баланс топливно-энергетических ресурсов, сдержать рост стоимости электрической и тепловой энергии для потребителей, а также будет способствовать эффективному росту экономики и ВВП, наращиванию технологического потенциала для долгосрочного развития энергетики на основе безопасных и экономически эффективных атомных станций.

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ
6.Экология

Даже если атомная электростанция работает идеально и без малейших сбоев, ее эксплуатация неизбежно ведет к накоплению радиоактивных веществ. Поэтому людям приходится решать очень серьезную проблему, имя которой – безопасное хранение отходов.

Отходы любой отрасли промышленности при огромных масштабах производства энергии, различных изделий и материалов создают огромной проблемой. Загрязнение окружающей среды и атмосферы во многих районах нашей планеты внушает тревогу и опасения. Речь идет о возможности сохранения животного и растительного мира уже не в первозданном виде, а хотя бы в пределах минимальных экологических норм.

Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. Они накапливаются в виде жидких, твердых и газообразных веществ с разным уровнем активности и концентрации. Большинство отходов являются низкоактивными: это вода, используемая для очистки газов и поверхностей реактора, перчатки и обувь, загрязненные инструменты и перегоревшие лампочки из радиоактивных помещений, отработавшее оборудование, пыль, газовые фильтры и многое другое.

Газы и загрязненную воду пропускают через специальные фильтры, пока они не достигнут чистоты атмосферного воздуха и питьевой воды. Ставшие радиоактивными фильтры перерабатывают вместе с твердыми отходами. Их смешивают с цементом и превращают в блоки или вместе с горячим битумом заливают в стальные емкости.

Труднее всего подготовить к долговременному хранению высокоактивные отходы. Лучше всего такой «мусор» превращать в стекло и керамику. Для этого отходы прокаливают и сплавляют с веществами, образующими стеклокерамическую массу. Рассчитано, что для растворения 1 мм поверхностного слоя такой массы в воде потребуется не менее 100 лет.

В отличие от многих химических отходов, опасность радиоактивных отходов со временем снижается. Бoльшая часть радиоактивных изотопов имеет период

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ
полураспада около 30 лет, поэтому уже через 300 лет они почти полностью исчезнут. Так что для окончательного удаления радиоактивных отходов необходимо строить такие долговременные хранилища, которые позволили бы надежно изолировать отходы от их проникновения в окружающую среду до полного распада радионуклидов. Такие хранилища называют могильниками.

Необходимо учитывать, что высокоактивные отходы долгое время выделяют значительное количество теплоты. Поэтому чаще всего их удаляют в глубинные зоны земной коры. Вокруг хранилища устанавливают контролируемую зону, в которой вводят ограничения на деятельность человека, в том числе бурение и добычу полезных ископаемых.

Предлагался еще один способ решения проблемы радиоактивных отходов – отправлять их в космос. Действительно, объем отходов невелик, поэтому их можно удалить на такие космические орбиты, которые не пересекаются с орбитой Земли, и навсегда избавиться радиоактивного загрязнения. Однако этот путь был отвергнут из-за опасности непредвиденного возвращения на Землю ракеты-носителя в случае возникновения каких-либо неполадок.

В некоторых странах серьезно рассматривается метод захоронения твердых радиоактивных отходов в глубинные воды океанов. Этот метод подкупает своей простотой и экономичностью. Однако такой способ вызывает серьезные возражения, основанные на коррозионных свойствах морской воды. Высказываются опасения, что коррозия достаточно быстро нарушит целостность контейнеров, и радиоактивные вещества попадут в воду, а морские течения разнесут активность по морским просторам.

Эксплуатация АЭС сопровождается не только опасностью радиационного загрязнения, но и другими видами воздействия на окружающую среду. Основным является тепловое воздействие. Оно в полтора-два раза выше, чем от тепловых электростанций.

При работе АЭС возникает необходимость охлаждения отработанного водяного пара. Самым простым способом является охлаждение водой из реки, озера, моря или специально сооруженных бассейнов. Вода, нагретая на 5–15 °С, вновь возвращается в тот же источник. Но этот способ несет с собой опасность ухудшения экологической обстановки в водной среде в местах расположения АЭС.

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ
Небольшие потери пополняются постоянной подпиткой свежей водой. При такой системе охлаждения в атмосферу выбрасывается огромного количество водяного пара и капельной влаги. Это может привести к увеличению количества выпадающих осадков, частоты образования туманов, облачности.

В последние годы стали применять систему воздушного охлаждения водяного пара. В этом случае нет потерь воды, и она наиболее безвредна для окружающей среды. Однако такая система не работает при высокой средней температуре окружающего воздуха. Кроме того, себестоимость электроэнергии существенно возрастает.

Заключение

Энергетическая проблема – одна из важнейших проблем, которые сегодня приходится решать человечеству. Уже стали привычными такие достижения науки и техники, как средства мгновенной связи, быстрый транспорт, освоение космического пространства. Но все это требует огромных затрат энергии. Резкий рост производства и потребления энергии выдвинул новую острую проблему загрязнения окружающей среды, которое представляет серьезную опасность для человечества.

Мировые энергетические потребности в ближайшее десятилетия будут интенсивно возрастать. Какой-либо один источник энергии не сможет их обеспечить, поэтому необходимо развивать все источники энергии и эффективно использовать энергетические ресурсы.

На ближайшем этапе развития энергетики (первые десятилетия XXI в.) наиболее перспективными останутся угольная энергетика и ядерная энергетика с реакторами на тепловых и быстрых нейтронах. Однако можно надеяться, что человечество не остановится на пути прогресса, связанного с потреблением энергии во всевозрастающих количествах.

Список используемой литературы

1) Кесслер «Ядерная энергетика» Москва: Энергоиздат, 1986 г.

2) Х. Маргулова «Атомная энергетика сегодня и завтра» Москва: Высшая школа, 1989 г.

3) Дж. Коллиер, Дж. Хьюитт «Введение в ядерную энергетику» Москва: Энергоатомиздат, 1989 г.

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

География атомной энергетики мира: современные особенности, проблемы и перспективы развития

2.3 Перспективы развития атомной энергетики мира

Атомная энергетика, хоть и имеет трагическую историю развития, не лишена определенных преимуществ, чем и обусловлен интерес государств к этой отрасли. У АЭС есть как сторонники, поддерживающие развитие и дальнейшее строительство, так и противники, в основном экологические организации, вроде «Гринпис».

Сегодня примерно 17% мирового производства электроэнергии приходится на атомные электростанции (АЭС). В некоторых странах ее доля значительно больше. Например, в Швеции она составляет около половины всей электроэнергии, во Франции - около трех четвертей. Недавно согласно принятой в Китае программе вклад энергии атомных электростанций предусмотрено увеличить в пять - шесть раз. Заметную, хотя пока не определяющую, роль АЭС играют в США и России. Более сорока лет назад, когда дала ток первая атомная станция в Обнинске, многим казалось, что атомная энергетика - вполне безопасная и экологически чистая. Авария на одной из американской АЭС, а затем катастрофа в Чернобыле показали, что на самом деле атомная энергетика сопряжена с большой опасностью. Общественное сопротивление сегодня таково, что строительство новых АЭС в большинстве стран практически остановлено. Исключение составляют лишь восточноазиатские страны - Япония, Корея, Китай, где атомная энергетика продолжает развиваться.

Специалисты, хорошо знающие сильные и слабые стороны реакторов, смотрят на атомную опасность более спокойно. Накопленный опыт и новые технологии позволяют строить реакторы, вероятность выхода которых из-под контроля хотя и не равна нулю, но крайне мала. На современных атомных предприятиях обеспечен строжайший контроль радиации в помещениях и в каналах реакторов: сменные комбинезоны, специальная обувь, автоматические детекторы излучений, которые ни за что не откроют шлюзовые двери, если на вас есть хотя бы небольшие следы радиоактивной «грязи». Например, на атомной электростанции в Швеции, где чистейшие пластиковые полы и непрерывная очистка воздуха в просторных помещениях, казалось бы, исключают даже мысль о сколь-нибудь заметном радиоактивном заражении.

Атомной энергетике предшествовали испытания ядерного оружия. На земле и в атмосфере проводились испытания ядерных и термоядерных бомб, взрывы которых ужасали мир. В то же время инженеры разрабатывали и ядерные реакторы, предназначенные для получения электрической энергии. Приоритет получили военное направление - производство реакторов для кораблей военно-морского флота. Военным ведомствам особенно перспективным представлялось использование реакторов на подводных лодках: такие суда имели бы практически неограниченный радиус действия и могли бы годами находиться под водой. Американцы сосредоточили свои усилия на создании корпусных водо-водяных реакторов, в которых замедлителем нейтронов, и теплоносителем служила обычная («легкая») вода и которые обладали большой мощностью на единицу массы энергетической установки. Были сооружены полномасштабные наземные прототипы транспортных реакторов, на которых проверялись все конструктивные решения и отрабатывались системы управления и безопасности. В середине 50-х годов XX в. первая подводная лодка с атомным двигателем «Наутилиус» прошла подо льдами Ледовитого океана.

Реактор РБМК (реактор большой мощности, канальный), в котором вода, охлаждающая тепловыделяющие элементы, находится в состоянии кипения, появился как очередной этап последовательного развития канальных графитовых реакторов: промышленный графитовый реактор, реактор первой в мире АЭС, реакторы Белоярской АЭС. Ленинградская АЭС на РБМК проявила свой норов. Несмотря на наличие традиционной автоматической системы регулирования, оператор должен был по мере выгорания топлива все чаще и чаще вмешиваться в управление реактором (до 200 раз в смену). Это было связано с возникновением или усилением в процессе эксплуатации реактора положительных обратных связей, приводящих к развитию неустойчивости с периодом в 10 минут. Для нормального стабильного функционирования какого-либо устройства с положительной обратной связью необходима надежная система автоматического регулирования. Однако всегда существует опасность аварии из-за отказа подобной системы. С проблемой неустойчивости столкнулись и в Канаде, когда пустили в 1971 г. канальный реактор с тяжелой водой в качестве замедлителей нейтронов и кипящей легкой водой в качестве теплоносителя. Канадские специалисты тогда закрыли установку. Сравнительно быстро была разработана новая, приспособленная к РБМК, система автоматического регулирования. Ее внедрение обеспечило приемлемую устойчивость реактора. В СССР развернулось серийное строительство АЭС с реакторами РБМК (нигде в мире подобные установки не использовались).

В СССР накоплен многолетний опыт сооружения и эксплуатации АЭС с реакторами ВВЭР (аналогичными американским PWR), на базе которых может быть в относительно короткие сроки создан в большей степени безопасный энергетический реактор. Такой, что в случае аварийной ситуации все радиоактивные осколки деления ядер урана должны остаться в пределах защитной оболочки.

Развитые страны с большой численностью населения в обозримом будущем не смогут из-за приближающейся экологической катастрофы обойтись без атомной энергетики даже при некоторых запасах обычных видов топлива. Режим экономии энергии может лишь на некоторое время отодвинуть проблему, но не решить ее. Кроме того, многие специалисты считают, что в наших условиях даже временного эффекта добиться не удастся: эффективность предприятий по энергоснабжению зависит от уровня развития экономики. Даже США потребовалось 20-25 лет со дня внедрения в промышленность энергоемких производств.

Вынужденная пауза, возникшая в развитии атомной энергетики, должна быть использована для разработки достаточно безопасного энергетического реактора на базе реактора ВВЭР, а также для разработки альтернативных энергетических реакторов, безопасность которых должна находиться на том же уровне, а экономическая эффективность значительно выше. Целесообразно построить демонстрационную АЭС с подземным размещением реактора ВВЭР в наиболее удобном месте, чтобы проверить ее экономическую эффективность и безопасность.

В последнее время предлагаются различные конструктивные решения атомных станций. В частности, компактную АЭС разработали специалисты Санкт-Петербургского морского бюро машиностроения «Малахит». Предлагаемая станция предназначается для Калининградской области, где проблема энергоресурсов стоит достаточно остро. Разработчики предусмотрели использование в АЭС жидкометаллического теплоносителя (сплава свинца с висмутом) и исключают возможность возникновения на ней радиационно-опасных аварий, в том числе при любых внешних воздействиях. Станция отличается экологической чистотой и экономической эффективностью. Все ее основное оборудование предполагается разместить глубоко под землей - в проложенном среди скальных пород туннеле диаметром в 20 м. Это дает возможность свести к минимуму число наземных сооружений и площадь отчуждаемых земель. Структура проектируемой АЭС - модульная, что тоже очень существенно. Проектная мощность Калининградской АЭС - 220 МВт, но может быть по мере необходимости уменьшена или увеличена в несколько раз при помощи изменения числа модулей.

Перспективы атомной энергетики мира. Давно ведущаяся дискуссия по этому вопросу разделила всех ее участников на два больших лагеря - сторонников и противников развития этой отрасли. Первые доказывают, что без мощностей АЭС человечество не сможет обеспечить себя необходимым количеством электроэнергии. Вторые делают акцент на очень высокую капиталоемкость (строительство 1 энергоблока мощностью 1ГВт составляет 2 млрд. долларов) атомной энергетики и в еще большей степени - на ее недостаточную экологическую и радиационную безопасность. Поэтому и имеющиеся прогнозы, сценарии развития АЭС на будущее сильно различаются.

В развитии атомной энергетики выделяются этапы зарождения, становления развития, стагнации, возрождения и современный. I этап: Зарождение...

География атомной энергетики мира: современные особенности, проблемы и перспективы развития

Существование любой отрасли энергетики и атомной в том числе, невозможно без сырьевой базы. Для данной отрасли сырьевой базой являются руды урана, на основе которых изготавливаются сначала тепловыделяющие элементы (ТВЭЛы)...

География атомной энергетики мира: современные особенности, проблемы и перспективы развития

В России сегодня эксплуатируются 29 ядерных энергоблоков общей установленной электрической мощностью 21,2 ГВт. В их числе 13 энергоблоков с реакторами типа ВВЭР, 11 энергоблоков с реакторами типа РБМК...

Особенности размещения и развития атомной энергетики РФ: противоречия, перспективы

Мировые ресурсы урана в наиболее богатых месторождениях с концентрацией металла в рудах >=0,1% в настоящее время оцениваются следующим образом: разведанные - несколько более 5 млн. т, потенциальные - 10 млн. т...

Особенности размещения и развития атомной энергетики РФ: противоречия, перспективы

Развитие атомной энергетики в два этапа предполагает длительное сосуществование тепловых реакторов на 235U, пока есть дешёвый уран, и быстрых реакторов...

Понятие территориальной организации хозяйства

В перспективе ведущими отраслями промышленного сектора экономики будут машиностроение, ядерная энергетика, электрометаллургия. В машиностроении приоритет в большей мере следует отдавать наукоемким отраслям - приборостроению, электронике...

Основным производителем тепловой и электрической энергии в Республике Татарстан является ОАО «Татэнерго». На данном предприятии вырабатывается практически вся электроэнергия и значительная доля тепловой энергии...

Проблемы развития энергетики в Республике Татарстан

Северо-Запад России в мировой экономике

В современной ситуации все действия, претендующие на развитие макрорегиона "Северо-Запад", должны быть согласованы с концептом "нового освоения" и выстраиваться в логике комплиментарности (взаимодополняемости)...

Характеристика лесоперерабатывающей промышленности Северо-Запада России

При размещении предприятий по механической обработке древесины необходимо учитывать такие особенности лесной промышленности, как высокие удельные расходы сырья на изготовление продукции и огромные производственные отходы...

Экономико-географическая сравнительная характеристика Атырауской области и республики Дагестан

В начале ХХ в. свыше 2/3 мирового энергопотребления обеспечивалось за счет угля. В это же время в топливном балансе России дрова составляли 57%, солома -- 11%, на минеральное топливо (прежде всего уголь) приходилось 32%...

В преддверии величайшей социальной революции в истории человечества разум обязан искать пути смягчения предстоящего переходного процесса. Такое смягчение может быть достигнуто, если мы сумеем сформулировать такие энергетические программы, которые дадут надежду людям на существенное увеличение энергетического производства без воздействия на биосферу Земли.

Поэтому сегодня важнейшей задачей, стоящей перед человечеством, является проблема создания экологически чистой энергетики, энергетики, способной работать длительное время без существенного влияния на биологическое равновесие планеты.

После решения уйти из ракетной тематики я, по рекомендации моего друга, профессора Московского энергетического института Михаила Ефимовича Дейча, встретился с его учеником, директором ВНИИ атомного энергетического машиностроения Геннадием Алексеевичем Филипповым. На моё признание в том, что я не знаю даже терминологии в стационарной энергетике, он ответил просто: «Ничего, разберётесь. Для меня главное то, что Вас рекомендовал Дейч». В результате, не зная ни тематики, ни одного человека в институте, я стал его заместителем по науке.

Я достаточно быстро вошёл в новую для себя проблематику. После Чернобыльской катастрофы министр энергетического машиностроения СССР Владимир Макарович Величко назначил меня руководителем работ по линии министерства на ЧАЭС. Наше министерство, обладая десятками крупнейших заводов, было поставщиком примерно 70% оборудования на все АЭС страны. Близкое знакомство в течение примерно года (с мая 1986 по июль 1987) с реальными проблемами радиационного поражения заставили меня начать плотно думать о будущей энергетике. В результате я пришёл к пониманию того, что в современном виде у атомной энергетики перспектив нет.

Основное назначение атомной энергетики – сократить потребление органического топлива и тем самым уменьшить потребление атмосферного кислорода и эмиссию углекислого газа в атмосферу Земли. Атомная энергетика в современном виде не в состоянии решить эту проблему. Несмотря на сорокалетнюю историю развития, её доля в общем энергетическом балансе планеты составляет всего несколько процентов. С точки зрения влияния на решение основной задачи, атомной энергетики сегодня просто нет. Есть только связанные с ней проблемы.

Прогнозы развития атомной энергетики, базирующейся на реакциях деления изотопов U 235 и Pu 239 , являются крайне пессимистическими. Увеличение генерирующих мощностей было запланировано только до 2007–2008 годов, да и то в основном за счёт Юго-Восточной Азии (3/4 всех новых мощностей планировалось ввести именно там). Во всех западных странах заказы на ввод новых блоков в предстоявшее десятилетие и далее были аннулированы. После 2008–2010 годов предполагалось начать массовый вывод из эксплуатации блоков, отработавших свой ресурс, что всегда бывает сопряжено с перемещением и захоронением огромных масс радиоактивных отходов. Западная общественность к проблеме перемещения отходов и сооружению хранилищ на своей территории относится резко отрицательно.


В учёном совете нашего института, например, начали появляться работы по выводу АЭС из эксплуатации. Предлагается практически их не трогать, а просто консервировать и ждать сотни лет. Причём стоить всё это будет сотни миллионов долларов по каждой станции плюс десятки миллионов ежегодно. Если и далее продолжить строительство современных АЭС, сколько же таких дорогостоящих памятников мы будем иметь уже в ближайшее время?

Наиболее популярна программа замкнутого топливного цикла с использованием быстрых реакторов для наработки плутония. В этой программе плутонию предназначается роль основного делящегося материала. (При широком развитии современной атомной энергетики без плутония не обойтись просто потому, что запасы 35-го урана по энергоёмкости не превышают разведанных запасов, например, нефти и газа). Программа абсолютно бесперспективна просто потому, что технологии с плутонием не могут найти широкого применения, поскольку плутоний является основным материалом для бомб. Для Запада нет ничего страшнее передачи плутониевых технологий развивающимся странам. А без развития атомной энергетики в этих странах проблему эмиссии не решить. Западные страны не будут развивать атомную энергетику из-за отходов, а развивающимся не дадут, поскольку Запад не хочет, чтобы плутоний оказался в других руках. Так что с бридерами тупик, и напрашивается следующий вывод: сегодня нет реальных предложений для решения основной технологической проблемы нашего времени, проблемы сокращения эмиссии углекислоты и потребления атмосферного кислорода . Есть только, что называется, организационные подходы, о которых говорилось выше. Они приведут к резкому обострению ситуации между 2010 и 2015 годами. Поэтому сегодня крайне важно предложить энергетическую программу, которая сумела бы ослабить напряжённость в международных отношениях в период перехода к адекватным формам социальной организации. По существу, сегодня речь идёт о спасении западной цивилизации от чрезмерных потерь .

Есть ещё одно чрезвычайно важное обстоятельство, которое делает невозможным широкое распространение современных ядерных технологий. Оно заключается в том, что современные технологии ориентированы на использование урана-235, а его, как было сказано, мало. К середине текущего века энергетические потребности человечества за счёт только земных ресурсов удовлетворить будет невозможно. Потребуется промышленно-энергетический выход в космос. Единственным средством для этого является как раз уран-235, поскольку с помощью химии крупные задачи в космосе решены быть не могут. Поэтому бездумное сжигание урана-235 – это не просто глупость, а преступление перед человечеством.

Для того чтобы найти подходы к решению энергетической проблемы, я в течение всех 90-х годов искал пути создания чистой ядерной энергетики. Такая схема вроде бы обозначилась. И если это действительно так, то это будет последний сравнительно дешёвый технологический подарок человечеству в период наступления сложнейших социальных преобразований.

Дело в том, что выделение положительной энергии при делении ядер начинается с массовых чисел в районе 60. В частности, деление ядер свинца и висмута, имеющих массовое число несколько больше двухсот, даёт энергию около 140–150 MэВ, в то время как уран и плутоний дают примерно 200 MэВ. Однако деление U 235 и Pu 239 , составляющих основу современной ядерной энергетики, происходит под действием нейтронов сравнительно низкой энергии (до 1 МэВ). Ядра же «неделящихся» актиноидов (Th, U 238) делятся при энергии более 1 MэВ. Нейтроны высоких энергий (более 10 МэВ) на Земле имеются только в космических лучах, интенсивность которых крайне мала. Поэтому основные процессы взаимодействия нейтронов высоких энергий с ядрами различных веществ (сечения ядерных реакций) изучены довольно слабо.

В принципе, нейтроны любых энергий можно получить при использовании ускорителей протонов. Однако эти ускорители имели до последнего времени крайне малые коэффициенты полезного действия. Только в конце XX века появились технологии, позволяющие создать ускорители протонов достаточно высокой эффективности. Это дало возможность начать эксперименты в области так называемой электроядерной энергетики. Все в мире пошли по пути получения на ускорителях нейтронов с энергией, достаточной для деления U 235 . Для этой цели требовались ускорители с энергией не более 1–1,5 ГэВ. В случае с «неделящимися» изотопами этой энергии мало.

Включиться в программу электроядерных экспериментов по урановой программе на ускорителе в г. Дубна нам помог последний из могикан советской атомной техники академик Валерий Иванович Субботин. Я с ним познакомился в 1986 году во время работы чернобыльских комиссий. В. И. Субботин познакомил меня с Александром Михайловичем Балдиным, директором лаборатории физики высоких энергий Объединённого института ядерной физики в г. Дубна. Александр Михайлович дал нам возможность принять участие в эксперименте на синхрофазотроне ИЯФ. Формально мы должны были разработать аппаратуру теплофизических измерений для уран-свинцовых сборок, используемых в электроядерных экспериментах. Поставить вопрос о проведении эксперимента сразу на сборках, состоящих из материалов актиноидной группы, было абсолютно нереально. Поэтому я договорился о проведении эксперимента на большой чисто свинцовой сборке при энергии протонов в 5 ГэВ. Однако принять участие в работе я не смог, поскольку после этого я надолго попал в больницу.

Эксперимент был выполнен в июле 1998 года. Его проводила большая международная группа, лидерами в которой были учёные из ФРГ. К сожалению, в части методического обеспечения той задачи, которую я ставил, он был сделан плохо. Я не был поставлен в известность о проведении эксперимента. Поэтому я не смог дать своих предложений по его методическому обеспечению. Термопары нормально сработали, большего для программы деления урана не требовалось, а потому материалы эксперимента, никем не востребованные, пролежали почти год. Когда после выхода из больницы в мае 1999 года я узнал, что эксперимент выполнен, я попросил показать мне его результаты. Одного взгляда на экспериментальные кривые было достаточно, чтобы увидеть то, что положительный результат всей программы не исключён.

Дело в том, что если реакция деления свинца не играет особой роли, то тепловыделение должно происходить только в центре свинцовой сборки за счёт торможения заряженных частиц, образующихся после разрушения ядер свинца и имеющих малый пробег в плотном веществе свинца. Однако было обнаружено, что термопара, расположенная на периферии мишени, начала нагреваться одновременно с центральными термопарами в момент включения пучка, к тому же всего в два раза слабее, чем центральная. Оценки показывают, что ни теплопроводность, ни нагрев за счёт термализации нейтронов, ни гамма-излучение, ни нагрев за счёт заряженных частиц не могут обеспечить наблюдаемый темп разогрева периферийной зоны. Об этом же говорят расчёты, которые были выполнены по моей просьбе Институтом прикладной математики РАН им. М. В. Келдыша по коду Лос-Аламосской лаборатории США. В эксперименте же грелась и периферия сборки. Это могло быть связано только с делением свинца. Результат требовал немедленной проверки, ввиду его исключительной важности.

Я начал требовать проведения чистого эксперимента по своей методике. Я написал массу писем В. В. Путину и членам его Правительства. Всё безрезультатно. Дело упирается, очевидно, в то, что у атомного лобби имеется огромное желание заработать на завозе отработавшего топлива из-за рубежа в Россию. Доказательство возможности создания ядерной энергетики, не использующей U 235 и Pu 239 , закроет навсегда этот миф. (Когда проводились слушания по этому вопросу в Думе, из всех специалистов, работающих в атомной энергетике, только В. И. Субботин и я выступили против варианта с завозом отработанного топлива. Нам не давали говорить. У меня, например, просто выключили микрофон.)

Каких-либо перспектив у современной схемы ядерной энергетики в любом случае просто нет. Видит Бог, я делал и буду делать всё, что могу, чтобы провести свой эксперимент. Его необходимо выполнить, ввиду его чрезвычайной важности. Тем более, что Миннауки и Минатом финансируют совершенно бессмысленные работы по делению урана в электроядерных схемах. Будто бы уран не делится и без ускорителей. В России существует большая, хорошо финансируемая программа по этой теме, руководимая министром Минатома.

Когда этот раздел был уже написан, мне позвонили из Миннауки и сообщили, что решение о финансировании эксперимента, наконец, после трёх лет изнурительной борьбы принято и его финансирование открыто. Эксперимент пройдёт в Протвино на ускорителе Института физики высоких энергий в марте – апреле 2002 года. Я не знаю, что повлияло на принятие этого решения. Депутат Государственной Думы от Арзамаса доктор физико-математических наук Иван Игнатьевич Никитчук послал два запроса в Министерство науки. В последнее время я предпринял несколько достаточно резких шагов. В частности, я имел откровенный разговор по телефону с первым заместителем министра Миннауки С. Б. Алёшиным. Мне представляется, что мне удалось его убедить.

Этот эксперимент мне нужен, чтобы точно знать, имеем ли мы последний технологический резерв для смягчения сложнейших социальных процессов в ближайшем будущем. Но если и его результат окажется отрицательным, то остаются только весьма болезненные организационные решения, о которых я говорил выше.

Авария на АЭС «Фукусима-1» обратила взоры всего мира на вопросы ядерной безопасности. В Европе поднялась волна протестов против использования атомных электростанций, в Германии, Франции и Италии прошли антиядерные демонстрации. Во многих странах приостановились проекты по разработке АЭС. Германия объявила о закрытии семи станций, которые были введены в эксплуатацию до 1980 года, а также временном приостановлении продления срока использования АЭС. Швейцария, Республика Корея, Индия и Китай решили вторично утвердить проекты по развитию собственных атомных электростанций.

Будучи серьезной ядерной катастрофой за последние 50 лет, уступающей только Чернобыльской аварии, инцидент на АЭС «Фукусима-1» бросил тень на развитие глобальной ядерной энергетики, а также заставил людей задуматься: как будет развиваться путь новых источников энергии в будущем?

Возрождение ядерной энергии с целью ослабления давления с мировыми поставками источников энергии и климатическими изменениями

В мировых масштабах на сегодня 13-15% поставок электроэнергии приходится на ядерную. Главные страны – энергетические потребители в большей степени зависят от ядерной энергии, доля которой составляет: Франция – 77%, Республика Корея – 38%, Германия – 32%, Япония – 30%, США – 20%, Великобритания – 20%, Россия – 16%. По сравнению с этими странами, доля ядерной энергии в общей энергетической структуре Китая мала. Вплоть до марта 2011 года всего 13 станций были введены в эксплуатацию на территории КНР, которые по установленной мощности составляют около 1,8% от общего показателя.

Главной движущей для развития ядерной энергии силой является гарантия энергетических поставок, ответ на климатические изменения, сокращение выбросов парниковых газов. Ядерная энергия рассматривается в качестве отличной альтернативы для ископаемых видов топлива, а также в качестве важного средства по масштабному сокращению выбросов парниковых газов.

В связи с этим, хотя аварии на Чернобыле и Три-Майл Айланде в свое время стали причиной остановки строительства АЭС по всему миру на несколько десятилетий, поскольку сейчас постоянно растут потребности в источниках энергии, неотложной задачей является сокращение эмиссии парниковых газов, сегодняшней тенденцией стало развитие новых источников энергии, в том числе и ядерной, и она не изменится из-за случайных несчастных случаев. После аварии на АЭС «Фукусима-1», США, Франция, Великобритания и другие страны отчетливо заявили, что не будут отказываться от развития ядерной энергии из-за произошедшего.

Возобновляемые источники энергии: еще нет хороших альтернатив ядерной энергии

Согласно докладу «Инвестиционные тенденции устойчивого развития источников энергии в 2010 году», опубликованному Программой ООН по окружающей среде, в 2009 году возобновляемые источники энергии составляли 18% от общего показателя в мире, в том числе гидроэлектроэнергия занимала 15%, энергия ветра, солнца и биомассы – 3%. В Китае в 2009 году энергия угля была равна 75%, гидроэлектроэнергия составляла 22,5%, а доля энергии ветра, солнца и биомассы не достигала и 1%. Развитие различных видов возобновляемых источников энергии имеет свои ограничения, пока не найдена хорошая альтернатива ядерной энергии.

Гидроэлектроэнергия – наиболее зрелая технология использования возобновляемых источников энергии, широко используется по всему миру. В настоящее время водно-энергетические ресурсы развитых стран в основном разведаны, роста гидроэнергетического потенциала не ожидается. Строительство гидроэнергостанций в основном сконцентрировано в развивающихся странах. План 12-й пятилетки Китая также ставит цель масштабного развития гидроэлектроэнергии. По оценкам экспертов области, в будущие пять лет КНР ежегодно будет завершать строительство одной подобной ГЭС «Санься» станции, лишь так стране удастся осуществить намеченные цели. При снижении темпов развития ядерной энергии необходимо будет ускорять освоение гидроэлектроэнергии, задача непростая. С точки зрения долгосрочной перспективы, встает вопрос с недостатком водных ресурсов развивающихся стран, большой спор вызывают проблемы, связанные с загрязнением окружающей среды и экологическим ущербом в результате строительства ГЭС.

Использование энергии ветра и солнца легко может подвергаться ограничениям, имеющим отношение к географическим факторам и климату. В некоторых странах с благоприятными географическими и климатическими условиями, где преобладает небольшой спрос на энергоносители, энергия ветра и солнца могут стать основными источниками энергии. Однако для крупных стран-энергопотребителей, ветряную и солнечную энергию целесообразнее использовать в отдельных районах с благоприятным географическим положением и климатом, таким образом, образуется система распределенного энергоснабжения.

Энергия биомассы не подвергается ограничениям, связанным с географией и климатом, но здесь существуют другие проблемы, касающиеся недостатка биологических ресурсов, плохого их качества.

Атомная энергетика: продвигать развитие новых стратегических отраслей

Кроме гарантии поставок энергоносителей, ядерная энергетика оказывает заметное стимулирующее воздействие на общий промышленный уровень государства. Мировые ядерные державы, без сомнений, являются промышленно развитыми странами. Для развития ядерной энергетики необходимы огромные капиталовложения и высокие технологии, которые свидетельствуют о комплексной силе и стратегических возможностях того или иного государства. В определенной степени, наличие масштабной и передовой индустрии ядерной энергетики означает вступление страны в клуб мировых держав.

Атомная энергетика – отрасль, которая сосредотачивает в себе технологии и денежные средства, затрагивает развитие нескольких десятков других отраслей, в том числе и механики, металлургии, электроники, химии, аппаратов, инструментов и материалов. В связи с этим, развитие передовой ядерной энергетики предполагает приведение в действие лучших технологий других индустрий, всесторонне поднимает технический и инновационный уровень государства, способствует повышению уровня промышленного производства, тем самым, стимулирует промышленную модернизацию и развитие новых стратегических отраслей.

В настоящее время мир уже вступил в эпоху инноваций и промышленного возрождения, по-новому оформляется производственная цепочка в глобальной экономике. С одной стороны, основные страны мира с целью скорейшего выхода из международного финансового кризиса развивают индустрии стратегического характера, ищут новые научно-технические опоры для продвижения экономического роста; с другой стороны, со вступлением в 21-й век, в ядерной энергетике также прослеживаются признаки крупных научно-технических инноваций, например, строительство АЭС третьего поколения, предполагается, что ядерные технологии четвертого поколения вступят в стадию коммерциализации к 2030 году. В связи с этим, основные страны мира продвигают развитие ядерной энергетики, тем самым, стимулируют научно-технические инновации в стране, повышают уровень производства оборудования, а также делают упор на достижение экономического роста в будущем.

Будущее направление: более безопасная ядерная энергия

Авария на АЭС «Фукусима-1» не изменит будущие тенденции развития ядерной энергетики. Одновременно с этим, человечество вынесло для себя урок из произошедшей трагедии: необходимо больше уделять внимания ядерной безопасности, а также способствовать обновлению технологий. Авария на АЭС «Фукусима-1» ускорила закрытие старых электростанций в разных странах, а также способствовала использованию передовых и безопасных ядерных технологий третьего поколения. Всесторонне были подняты нормы безопасности на АЭС. После катастрофы в Японии, атомным электростанциям в мире были предъявлены более высокие требования в безопасности. Кроме того, усилился контроль над безопасностью на АЭС, тщательно выбирается место для строительства станций. Например, проекты по созданию АЭС в Хунане, Чунцине, Шэньси, Ганьсу и других местах, которые расположены в сейсмически опасных зонах, будут пересмотрены. -о-

В настоящее время из 15 атомных электростанций, построенных в СССР, 9 находятся на территории России; установленная мощность их 29 энергоблоков составляет 21242 мегаватта. Среди действующих энергоблоков 13 имеют корпусные реакторы ВВЭР (водо-водяной энергетический реактор, активная зона которого размещается в металлическом или из предварительно напряженного бетона корпусе, рассчитанном на полное давление теплоносителя), 11 блоков- канальные реакторы РМБК-1000(РМБК - графито-водяной реактор без прочного корпуса. Теплоноситель в этом реакторе протекает через трубы, внутри которых находятся тепловыделяющие элементы), 4 блока- ЭГП (водо-графитовый канальный реактор с кипящим теплоносителем) по 12 мегаватт каждый установлены на Билибинской АТЭС и еще один энергоблок снабжен реактором БН-600 на быстрых нейтронах. Следует заметить, что основной парк корпусных реакторов последнего поколения был размещен на Украине (10 блоков ВВЭР-1000 и 2 блока ВВЭР-440).

Новые энергоблоки.

Сооружение нового поколения энергоблоков с корпусными реакторами (с водой под давлением) начинается в этом десятилетии. Первыми из них станут блоки ВВЭР-640, конструкция и параметры которых учитывают отечественный и мировой опыт, а также блоки с усовершенствованным реактором ВВЭР-1000 с существенно повышенными показателями безопасности. Головные энергоблоки ВВЭР-640 размещаются на площадках г. Сосновый Бор Ленинградской области и Кольской АЭС, а на базе ВВЭР-1000 - на площадке Нововоронежской АЭС.

Разработан также проект корпусного реактора ВПБЭР-600 средней мощности с интегральной компоновкой. АЭС с такими реакторами смогут сооружаться несколько позже.

Названные типы оборудования при своевременном выполнении всех научно-исследовательских и опытных работ обеспечат основные потребности атомной энергетики на прогнозируемый 15-20-летний период.

Существуют предложения продолжать работы по графито-водяным канальным реакторам, перейти на электрическую мощность 800 мегаватт и создать реактор, не уступающий реактору ВВЭР по безопасности. Такие реакторы могли бы заменить действующие реакторы РБМК. В перспективе возможно строительство энергоблоков с современными безопасными реакторами БН-800 на быстрых нейтронах. Эти реакторы могут быть использованы и для вовлечения в топливный цикл энергетического и оружейного плутония, для освоения технологий выжигания актиноидов (радиоактивных элементов-металлов, все изотопы которых радиоактивны).

Перспективы развития атомной энергетики.

При рассмотрении вопроса о перспективах атомной энергетики в ближайшем (до конца века) и отдаленном будущем необходимо учитывать влияние многих факторов: ограничение запасов природного урана, высокая по сравнению с ТЭС стоимость капитального строительства АЭС, негативное общественное мнение, которое привело к принятию в ряде стран (США, ФРГ, Швеция, Италия) законов, ограничивающих атомную энергетику в праве использовать ряд технологий (например, с использованием Рu и др.), что привело к свертыванию строительства новых мощностей и постепенному выводу отработавших без замены на новые. В то же время наличие большого запаса уже добытого и обогащенного урана, а также высвобождаемого при демонтаже ядерных боеголовок урана и плутония, наличие технологий расширенного воспроизводства (где в выгружаемом из реактора топливе содержится больше делящихся изотопов, чем загружалось) снимают проблему ограничения запасов природного урана, увеличивая возможности атомной энергетики до 200-300 Q. Это превышает ресурсы органического топлива и позволяет сформировать фундамент мировой энергетики на 200-300 лет вперед.

Но технологии расширенного воспроизводства (в частности, реакторы-размножители на быстрых нейтронах) не перешли в стадию серийного производства из-за отставания в области переработки и рецикла (извлечения из отработанного топлива «полезного» урана и плутония). А наиболее распространенные в мире современные реакторы на тепловых нейтронах используют лишь 0,50,6% урана (в основном делящийся изотоп U238 , концентрация которого в природном уране 0,7%). При такой низкой эффективности использования урана энергетические возможности атомной энергетики оцениваются только в 35 Q. Хотя это может оказаться приемлемым для мирового сообщества на ближайшую перспективу, с учетом уже сложившегося соотношения между атомной и традиционной энергетикой и постановкой темпов роста мощностей АЭС во всем мире. Кроме того, технология расширенного воспроизводства дает значительную дополнительную экологическую нагрузку. .Сегодня специалистам вполне понятно, что ядерная анергия, в принципе, является единственным реальным и существенным источником обеспечения электроэнергией человечества в долгосрочном плане, не вызывающим такие отрицательные для планеты явления, как парниковый эффект, кислотные дожди и т.д. Как известно, сегодня энергетика, базирующаяся на органическом топливе, то есть на сжигании угля, нефти и газа, является основой производства электроэнергии в мире Стремление сохранить органические виды топлива, одновременно являющиеся ценным сырьем, обязательство установить пределы для выбросов СО; или снизить их уровень и ограниченные перспективы широкомасштабного использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики.

Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности привлечения финансовых ресурсов для строительства и эксплуатации такой достаточно дорогой технологии, влияния общественного мнения в данной стране и ряда других причин.

Отдельно рассмотрим перспективы атомной энергетики в России. Созданный в России замкнутый научно-производственный комплекс технологически связанных предприятий охватывает все сферы, необходимые для функционирования атомной отрасли, включая добычу и переработку руды, металлургию, химию и радиохимию, машино- и приборостроение, строительный потенциал. Уникальным является научный и инженерно-технический потенциал отрасли. Промышленно-сырьевой потенциал отрасли позволяет уже в настоящее время обеспечить работу АЭС России и СНГ на много лет вперед, кроме того, планируются работы по вовлечению в топливный цикл накопленного оружейного урана и плутония. Россия может экспортировать природный и обогащенный уран на мировой рынок, учитывая, что уровень технологии добычи и переработки урана по некоторым направлениям превосходит мировой, что дает возможность в условиях мировой конкуренции удерживать позиции на мировом урановом рынке.

Но дальнейшее развитие отрасли без возврата к ней доверия населения невозможно. Для этого нужно на базе открытости отрасли формировать позитивное общественное мнение и обеспечить возможность безопасного функционирования АЭС под контролем МАГАТЭ. Учитывая экономические трудности России, отрасль сосредоточится в ближайшее время на безопасной эксплуатации существующих мощностей с постепенной заменой отработавших блоков первого поколения наиболее совершенными российскими реакторами (ВВЭР-1000, 500, 600), а небольшой рост мощностей произойдет за счет завершения строительства уже начатых станций. На длительную перспективу в России вероятен рост мощностей в переходом на АЭС новых поколений, уровень безопасности и экономические показатели которых обеспечат устойчивое развитие отрасли на перспективу.

В диалоге сторонников и противников атомной энергетики необходимы полная и точная информация по состоянию дел в отрасли как в отдельной стране, так и в мире, научно обоснованные прогнозы развития и потребности в атомной энергии. Только на пути гласности и информированности могут быть достигнуты приемлемые результаты. Более 400 блоков во всем мире (по данным, содержащимся в Информационной системе МАГАТЭ по энергетическим реакторам на конец 1994 года, в 30 странах эксплуатируется 432 АЭС общей мощностью приблизительно 340 ГВт) обеспечивают весомую долю потребностей общества в энергии. Миллионы людей в мире добывают уран, обогащают его, создают оборудование и строят атомные станции, десятки тысяч ученых работают в отрасли. Это одна из наиболее мощных отраслей современной индустрии, ставшая уже ее неотъемлемой частью. И хотя взлет атомной энергетики сейчас сменяется периодом стабилизации мощностей, учитывая позиции, завоеванные атомной энергетикой за 40 лет, есть надежда, что она сможет сохранить свою долю в мировом производстве электроэнергии на довольно длительную перспективу, пока не будет сформирован единый взгляд в мировом сообществе на необходимость и масштабы использования атомной энергетики в мире.

Список литературы :

1.”Ядерная энергетика в альтернативных энергетических сценариях” Энергия 1997 №4

2.”Некоторые экономические аспекты современного развития атомной энергетики”Вестник МГУ 1997 №1

3.”Положение и перспективы развития электроэнергетики России”БИКИ 1997 №8

4.Международная жизнь 1997 №5,№6

5.ВЕК 1996 №18, №13

6.Независимая газета 30.01.97

8.”Стратегия ядерной энергии” Международная жизнь 1997 №7

9 “О перспективах атомной энергетики в России” июнь 1995