Главная · Спорт и Фитнес · Переваривание и всасывание жиров в организме. Переваривание нейтрального жира в желудочно-кишечном тракте. Липазы и их роль Реакции происходящие при переваривании жиров

Переваривание и всасывание жиров в организме. Переваривание нейтрального жира в желудочно-кишечном тракте. Липазы и их роль Реакции происходящие при переваривании жиров

Расщепление нейтральных жиров осуществляет группа ферментов известных под общим названием липаза.

Виды липаз

  1. желудочная
  2. панкреатическая
  3. кишечная
  4. клеточная

Они обладают неодинаковой ферментной актив­ностью, но результат их воздействия на триглицериды однотипный - триглицериды расщепляются на глицерин и высшие жирные кислоты.

В слюне липаза отсутствует, поэтому в ротовой полости перева­ривание жиров не происходит. Начинается процесс пищеварительно­го расщепления триглицеридов в желудке под воздействием желу­дочной липазы. Но активность ее невелика из-за сильно кислой реак­ции содержимого желудка и отсутствия условий для эмульгирования жиров. Поэтому желудочная липаза воздействует только на хорошо эмульгированные жиры, а в таком виде в желудок могут поступать только жиры молока и яичного желтка. Желудочная липаза имеет пре­имущественное значение у детей грудного возраста при вскармливании молоком.

Основное расщепление триглицеридов происходит в верхних отделах тонкого кишечника под действием липазы, продуцируемой поджелудоч­ной железой. В этом процессе принимает участие также кишечная ли­паза, но активность ее незначительная. Поджелудочная железа выде­ляет в кишечник сок богатый бикарбонатами, что создает оптимальную для липазы слабо щелочную реакцию среды.

Панкреатическая липаза выделяется в кишечник в неактивном состоянии. Ее активация проис­ходит под влиянием желчных кислот, поступающих в кишечник в соста­ве желчи из печени.

К основным желчным кислотам относят: холевую, дезоксихолевую, хенодезоксихолевую, литохолевую. Как правило, в желчи они присут­ствуют в виде конъюгатов с аминокислотами глицином и таурином.

Конъюгаты называются соответственно:

  1. гликохолевая,
  2. гликодезоксихолевая,
  3. гликохенодезоксихолевая,
  4. гликолитохолевая или таурохолевая,
  5. тауродезоксихолевая,
  6. таурохенодезоксихолевая,
  7. тауролитохолевая кис­лоты.

Но только активацией липазы роль желчных кислот в перева­ривании липидов не ограничивается. Желчные кислоты обеспечивают эмульгирование жиров в результате чего образуется тонкая водно-жи­ровая эмульсия обладающая большой поверхностью соприкосновения с активной липазой.

Липаза, воздействуя на триглицериды пищи, расщеп­ляет их на глицерин и высшие жирные кислоты. Глицерин, как легко растворяющийся в воде, беспрепятственно всасывается кишечной стен­кой.

Несколько сложнее осуществляется процесс всасывания жирных кислот.

Нерастворимые в воде жирные кислоты реагируют с имеющи­мися в кишечнике в достаточном количестве ионами натрия и калия, образуя соответствующие соли жирных кислот или иначе - мыла. По­следние соединяются с желчными кислотами, в ходе чего возникают холеиновые комплексы, хорошо растворимые в воде и поэтому способ­ные всасываться кишечной стенкой. Всосавшись, они распадаются на исходные компоненты. Освободившиеся из этих комплексов желчные кислоты по системе воротной вены поступают в печень и вновь до­ставляются в желчный пузырь. Жирные кислоты и глицерин в клетках кишечного эпителия реагируют между собой с образованием триглицеридов, но уже специфических для данного организма, это, так назы­ваемый, первичный синтез триглицеридов, которые иначе называются экзогенными.

Фосфолипиды гидролизуются в тонком кишечнике под воздействием панкреатических фосфолипаз на составные компоненты: спирт, жирные кислоты, азотистое основание и фосфорную кислоту. Процесс всасыва­ния жирных кислот в кишечнике аналогичен приведенному выше. Ос­тальные компоненты, более или менее, легко всасываются кишечной стенкой.

Этерифицированный холестерин расщепляется панкреатической и кишечной холестеролэстеразами на свободный холестерин и жирные кислоты. Нерастворимый в воде холестерин всасывается в кишечнике подобно жирным кислотам.

В клетках кишечного эпителия происходит ресинтез специфических фосфолипидов и частичная этерификация холестерина.

Продукты первичного синтеза:

  1. триглицериды,
  2. фосфолипиды,
  3. холесте­рин,

там же в клетках кишечника соединяются с небольшим коли­чеством белка и образуют хиломикроны.

Хиломикроны - это стабильные сферичес­кие частички диаметром от 100 до 5000 нм. Содержание триглицери­дов в хиломикронах преобладает и может достигать до 80% всей их массы. Из-за относительно крупного диаметра хиломикроны вначале поступают в лимфатические сосуды кишечника, затем в грудной лимфа­тический проток и оттуда в венозную кровь. Лишь небольшая часть наиболее мелких хиломикронов, состоящих из липидов с короткими ра­дикалами жирных кислот, могут непосредственно всасываться через капиллярную стенку кровеносных сосудов кишечника и поступать в си­стему воротной вены печени.

Насыщение крови хиломикронами - али­ментарная гиперлипемия, наступает уже через 1-2 часа после приема пищи и достигает максимума через 2-3 часа. Если в это время взять кровь из вены, то сыворотка будет иметь молочновидный характер, это так называемая хилезная сыворотка.

Хилезность обусловлена рассея­нием света крупными жировыми шариками какими являются хило­микроны. Просветляется сыворотка крови т. е. освобождается от хило­микронов, приблизительно через 3-4 часа после приема пищи. Время просветления зависит от количества жиров принятых с пищей. Наиболь­шую роль в этом процессе, как и в жировом обмене вообще, играют печень и жировая ткань.

Переваривание жиров в желудочно-кишечном тракте was last modified: Октябрь 5th, 2017 by Мария Салецкая

Несомненно, что в повседневной пище из жиров доминируют нейтральные жиры, известные как триглицериды, каждая молекула которых включает глицериновое ядро и боковые цепи, состоящие из трех жирных кислот. Нейтральные жиры - основной компонент животной пищи, а в растительной пище их содержится крайне мало.

В обычной пище имеется небольшое количество фосфолипидов, холестерола и эфиров холестерола. Фосфолипиды и эфиры холестерола содержат жирные кислоты и, следовательно, могут рассматриваться как жиры. Впрочем, холестерол является представителем стеринов и не содержит жирных кислот, но проявляет некоторые физические и химические свойства жиров; к тому же он производится из жиров и легко превращается в них. Следовательно, с диетологической точки зрения, холестерол рассматривается как жир.

Переваривание жиров в кишечнике . Небольшое количество триглицеридов переваривается в желудке под действием лингвальной липазы, которая секретируется железами языка в ротовой полости и проглатывается вместе со слюной. Количество перевариваемых таким образом жиров составляет менее 10%, а потому не существенно. Основное переваривание жиров происходит в тонком кишечнике, о чем сказано далее.

Эмульгирование жиров желчными кислотами и лецитином. Первый этап переваривания жиров заключается в физическом разрушении капель жира на мелкие частицы, поскольку водорастворимые ферменты могут действовать только на поверхности капли. Этот процесс называют эмульгированием жиров, он начинается в желудке с перемешивания жиров с другими продуктами переваривания желудочного содержимого.

Далее основной этап эмульгирования происходит в двенадцатиперстной кишке под влиянием желчи, секрета печени, который не содержит пищеварительных ферментов. Однако желчь содержит большое количество желчных солей, а также фосфолипид - лецитин. Эти компоненты, в особенности лецитин, чрезвычайно важны для эмульгирования жиров. Полярные частицы (места, в которых происходит ионизация воды) желчных солей и молекул лецитина хорошо растворимы в воде, тогда как большая оставшаяся часть этих молекул хорошо растворима в жирах.

Таким образом, жирорастворимые порции секрета печени растворяются в поверхностном слое жировых капель вместе с выступающей полярной частью. В свою очередь, выступающая полярная часть растворима в окружающей водной фазе, что значительно снижает поверхностное натяжение жиров и делает их также растворимыми.

Когда поверхностное натяжение капли нерастворимой жидкости низкое, нерастворимая в воде жидкость во время перемещения значительно легче разрушается на множество мелких частиц, чем при более высоком поверхностном натяжении. Следовательно, основная функция желчных солей и лецитина - делать капли жира способными к легкому размельчению при перемешивании с водой в тонком кишечнике. Это действие аналогично действию синтетических моющих средств, широко используемых в домашнем хозяйстве для устранения жира.

Каждый раз в результате перемешивания в тонком кишечнике диаметр жировых капель существенно уменьшается, поэтому общая жировая поверхность многократно увеличивается. Из-за того, что средний диаметр частичек жира в кишечнике после эмульгирования оказывается менее 1 мкм, общая площадь жировой поверхности, образованная в результате процесса эмульгирования, увеличивается в 1000 раз.

Фермент липаза является водорастворимым и может воздействовать только на поверхности жировых капель. Отсюда понятно, насколько значительна детергентная роль лецитина и желчных солей в переваривании жиров.

Страница 1

В процессах пищеварения все омыляемые липиды (жиры, фосфолипиды, гликолипиды, стериды) подвергаются гидролизу на составные части, уже названные ранее, стерины же химическим изменениям не подвергаются. При изучении этого материала следует обратить внимание на отличия пищеварения липидов от соответствующих процессов для углеводов и белков: особую роль желчных кислот в распаде липидов и транспорте продуктов пищеварения.

В составе липидов пищи преобладают триглицериды. Фосфолипидов, стреинов и других липидов потребляется значительно меньше.

Большая часть поступающих с пищей триглицеридов расщепляется до моноглицеридов и жирных кислот в тонком кишечнике. Гидролиз жиров происходит под влиянием липаз сока поджелудочной железы и слизистой оболочки тонкого кишечника. Соли желчных кислот и фосфолипиды, проникающие из печени в просвет тонкого кишечника в составе желчи, способствуют образованию устойчивых эмульсий. В результате эмульгирования резко увеличивается площадь соприкосновения образовавшихся мельчайших капелек жира с водным раствором липазы, и этим самым увеличивается липолитическое действие фермента. Соли желчных кислот стимулируют процесс расщепления жиров не только участвуя в их эмульгировании, но и активируя липазу.

Расщепление стероидов происходит в кишечнике при участии фермента холинэстеразы, выделяющегося с соком поджелудочной железы. В результате гидролиза стероидов образуются жирные кислоты и холестерин.

Фосфолипиды расщепляются полностью или частично под действием гидролитических ферментов - специфических фосфолипаз. Продуктом полного гидролиза фосфолипидов являются: глицерин, высшие жирные кислоты, фосфорная кислота и азотистые основания.

Всасыванию продуктов переваривания жиров предшествует образование мицелл - надмолекулярных образований или ассоциатов. Мицеллы содержат в качестве основного компонента соли желчных кислот, в которых растворены жирные кислоты, моноглицериды, холестерин и т.п.

В клетках кишечной стенки из продуктов пищеварения, а в клетках печени, жировой ткани и других органов из предшественников, возникших в обмене углеводов и белков, происходит построение молекул специфических липидов тела человека - ресинтез триглицеридов и фосфолипидов. Однако их жирнокислотный состав по сравнению с жирами пищи изменен: в триглицеридах, синтезируемых в слизистой оболочке кишечника содержатся арахидоновая и линоленовая кислоты даже в том случае, если они отсутствуют в пище. Кроме того, в клетках кишечного эпителия жировая капля покрывается белковой оболочкой и происходит формирование хиломикронов - большая жировая капля, окруженная небольшим количеством белка. Транспортирует экзогенные липиды в печень, адипозную ткань, соединительную ткань, в миокард. Поскольку липиды и некоторые их составные части нерастворимы в воде, для переноса из одного органа в другой они образуют особые транспортные частицы, в составе которых обязательно есть белковый компонент. В зависимости от места образования эти частицы различаются структурой, соотношением составных частей и плотностью. Если в составе такой частицы в процентном соотношении жиры преобладают над белками, то такие частицы называются липопротеинами очень низкой плотности (ЛПОНП) или липопротеинами низкой плотности (ЛПНП). По мере увеличения процентного содержания белка (до 40%) частица превращается в липопротеин высокой плотности (ЛПВП). В настоящее время изучение таких транспортных частиц дает возможность с большой степенью точности оценивать состояние липидного обмена организма и использование липидов в качестве источников энергии.

Если образование липидов происходит из углеводов или белков, предшественником глицерина становится промежуточный продукт гликолиза - фосфодиоксиацетон, жирных кислот и холестерина - ацетилкофермент А, аминоспиртов - некоторые аминокислоты. Синтез липидов требует больших энерготрат для активации исходных веществ.

Основной часть продуктов распада жиров всасывается из клеток кишечного эпителия в лимфатическую систему кишечника, грудной лимфатический проток и только затем - в кровь. Незначительная часть короткоцепочечных жирных кислот и глицерина способна всасываться непосредственно в кровь воротной вены.

Смотрите также

Биологические ритмы
Обеспечение метаболизма нейронов рассматривается как главная функция мозговой гемоциркуляции. Ее нарушения вызывают тяжелую патологию, нередко завершающуюся трагическим концом. Поэтому борьба с сосуди...

Характеристика антиоксидантной системы организма
Антиоксидантная система (АОС) включает: 1. Энзиматические перехватчики, такие как супероксиддисмутазу (СОД), дисмутирующую О2 до Н2О2, каталазу и глутатионпероксидазу (ГПО), которые конвертируют...

Фильтрование и фасовка растворов.
Этот этап изготовления инъекционных растворов проводится только при удовлетворительных результатах полного химического анализа. ...

Транспорт веществ через клеточные мембраны

  1. Пассивный транспорт веществ, который осуществляется по градиенту концентрации через соответствующие мембранные каналы
  2. Активный транспорт против градиента концентрации с использованием энергии АТФ
  3. Облегчённый транспорт, в котором участвуют особые дополнительные транспортные белки, осуществляющие или однонаправленное перемещение двух веществ, или разнонаправленное перемещение двух веществ через мембрану

4. Транспорт макромолекул осуществляется путём эндоцитоза или экзоцитоза.

Для взрослого человека суточная потребность в жирах составляет 70-80 г, для детей 5 – 7 г/кг.

У взрослых людей процесс пищеварения происходит в тонком кишечнике. Необходимыми условиями для этого являются:

Наличие ферментов

Оптимальное рН

Эмульгирование жиров

Необходимость эмульгирования жиров связана с водонерастворимостью жиров. Водорастворимые ферменты могут действовать на липиды только на поверхности жировой капли. Эмульгирование повышает поверхность раздела липид / вода и обеспечивает большую поверхность контакта фермента и жира. В эмульгировании жиров основную роль играют жёлчные кислоты, выделяемые в просвет кишечника в составе жёлчи.

Различают простые и парные, первичные и вторичные жёлчные кислоты:

Простые жёлчные кислоты являются производными холановой кислоты.

К простым жёлчным кислотам относятся холевая, дезоксихолевая кислота, хенодезоксихолевая и литохолевая кислоты.

Синтез желчных кислот из холестерина происходит в печени. Ключевым ферментом является 7-альфагидроксилаза. Она переводит холестерин при участии цитохрома Р 450 в 7-альфахолестерин - 3,7 (ОН) 2 . Он, в свою очередь, переходит в хенодезоксихолевую кислоту 3,7 (ОН) 2 путём укорочения бокового радикала и в холевую кислоту 3,7,12 (ОН) 3 . Эти две кислоты являются первичными жёлчными кислотами. Их полярность увеличивается при образовании парных жёлчных кислот путём присоединения глицина (гликокола) и таурина.

У взрослого человека до 80% всех жёлчных кислот представлено гликохолевой и таурохолевой кислотами. В кишечнике под действием микрофлоры происходит отцепление таурина, гликокола и ОН группы в 7 положении с образованием вторичных желчных кислот: дезоксихолевой и литохолевой.

Все жёлчные кислоты относятся к поверхностно активным веществам, имеющим в своем составе гидрофобные и гидрофильные участки. Гидрофильными являются ОН - группы, остатки таурина и гликокола, а гидрофобными – радикал жёлчной кислоты. Благодаря дифильности жёлчные кислоты располагаются в поверхностном слое жировой капли и уменьшают поверхностное натяжение.


В результате снижения поверхностного натяжения под действием перистальтики кишечника, выделения СО 2 происходит дробление крупных капель жира на множество мелких – эмульгирование, резко возрастает поверхность соприкосновения капель жира и ферментов.

Липолитические ферменты, участвующие в переваривании жиров, активны при pН 8 – 8,5. Такая среда обеспечивается секрецией бикарбонатов поджелудочной железой.

Основные ферменты переваривания жиров вырабатываются поджелудочной железой и стенкой тонкого кишечника.

Впереваривании ТАГ участвует поджелудочная липаза. Она вырабатывается в неактивной форме, и в тонком кишечнике взаимодействует с дополнительным белком колипазой, который повышает активность липазы и обеспечивает контакт фермента с соответствующими жирами. Поджелудочная липаза отщепляет последовательно остатки жирных кислот из альфа-положении с образованием бета – моноацилглицерина (β -МАГ)

Образующиеся бета-МАГ могут в дальнейшем подвергаться расщеплению под действием липазы до глицерина и жирных кислот. Около 50% МАГ подвергается всасыванию.

Переваривание глицерофосфолипидов происходит под действием ферментов поджелудочной железы фосфолипаз, которые чаще всего обозначаются как фосфолипаза А, А 2 , С, Д. Под действием фосфолипазы А 2 отщепляется остаток жирной кислоты из β – положения с образованием продукта неполного распада глицерофосфолипида – лизофосфолипида. Лизофосфолипиды являются поверхностно активными веществами и усиливают процессы эмульгирования жиров.

Суточная потребность жиров

Количество жира в пищевом рационе определяется разными обстоятельствами, к которым относят интенсивность труда, климатические особенности, возраст человека. Человек, занятый интенсивным физическим трудом, нуждается в более калорийной пище, следовательно, и в большем количестве жиров. Климатические условия севера, требующие большой затраты тепловой энергии, также вызывают увеличение потребности в жирах. Чем больше расходуется энергия организма, тем большее количество жира нужно для ее восполнения.

Средняя физиологическая потребность в жире здорового человека составляет около 30 % от общей калорийности рациона. При тяжелом физическом труде и соответственно высокой калорийности рациона, обеспечивающей такой уровень энергетических затрат, доля жира в рационе может быть несколько выше - 35 % от общей энергетической ценности.

Нормальный уровень потребления жира составляет примерно 1 -1,5 г/кг, т. е. 70-105 г в день для человека с массой тела 70 кг. В расчет берется весь жир, содержащийся в рационе (как в составе жировых продуктов, так и скрытый жир всех других продуктов). Жировые продукты составляют половину содержания жира в рационе. Вторая половина приходится на так называемые скрытые жиры, т. е. жиры, входящие в состав всех продуктов. Скрытые жиры вводят в те или иные хлебобулочные и кондитерские изделия для улучшения их вкусовых качеств.

С учетом потребности организма в жирных полиненасыщенных кислотах 30% потребляемого жира должны составлять растительные масла и 70% животные жиры. В пожилом возрасте рационально снизить долю жира до 25 % от общей энергетической ценности рациона, которая также уменьшается. Соотношение животных и растительных жиров в пожилом возрасте должно быть изменено до 1:1. Такое же соотношение допустимо при увеличении содержания холестерина в сыворотке крови.

Пищевые источники жиров

Табл. Источники ненасыщенных и мононенасыщенных жирных кислот.

Табл. Источники полиненасыщенных жирных кислот.


Табл. Источники холестерола.

Высокое содержание Хс

Умеренное содержание Хс

Низкое содержание Хс

Яичные желтки

баранина

говядина

мясо птицы (без кожи)

мягкий маргарин

Твёрдый маргарин

Торты, пирожное

Растительные масла

Готовые продукты

Количество

Холестерин (мг)

Куриный желудок

Крабы, кальмары

Баранина вареная

Консервы рыбные в собственном соку

Рыбная икра (красная, черная)

Говядина вареная

Сыр жирный 50%

Куры, темное мясо (ножка, спинка)

Мясо птицы (гусь, утка)

Кролик вареный

Колбаса сырокопченая

Свинина постная вареная

Шпик, корейка, грудинка

Куры, белое мясо (грудка с кожей)

Рыба средней жирности (морской окунь, сом, карп, сельдь, осетр)

Сырок творожный

Сыр плавленый и соленые сыры (брынза и др.)

Креветки

Колбаса вареная

Творог жирный 18 %

Мороженое пломбир

Мороженое сливочное

Творог 9%

Мороженое молочное

Творог обезжиренный

Яйцо (желток)

Молоко 6 %, ряженка

Молоко 3 %, кефир 3 %

Кефир 1 %, молоко 1 %

Кефир обезжир., молоко обезжир.

Сметана 30 %

1/2 стакана

Сметана 20 %

1/2 стакана

Масло сливочное

Сметана 30 %

Молоко сгущенное

Переваривание жиров

Ферменты, которые расщепляют жиры – липазы. Воздействие на жиры липаз становится возможным после эмульгирования жиров, т.к. липиды нерастворимы в воде и они подвергаются воздействию липолитических ферментов только на границе разделе фаз и, следовательно, скорость переваривания зависит от площади этой поверхности. При эмульгировании жиров увеличивается их общая поверхность, что улучшает контакт жира с липазой и ускоряет его гидролиз. В организме основными эмульгаторами являются соли желчных кислот.

Синтез желчных кислот происходит на мембранах ЭПС гепатоцитов под действием гидроксилаз (цитохромов, в состав которых входит цитохром P 450), катализирующих включение гидроксильных групп в положение 7 α, 12 α, с последующим укорочением бокового радикала в положении 17 с окислением его до карбоксильной группы, откуда и происходит название - желчные кислоты.

Рис. Синтез и конъюгация желчных кислот.

Образующиеся в печени холевая и хенодезоксихолевая кислоты называются первичными желчными кислотами. Они этерифицируются глицином или таурином, давая парные (или конъюгированные) желчные кислоты, и в такой форме секретируются в желчь. В процесс конъюгации желчные кислоты вступают в активной форме в виде производных HS-KoA. Конъюгация желчных кислот делает их более амфифильными и таким образом увеличивает детергентные свойства.

Желчные кислоты, синтезированные в печени, секретируются в желчный пузырь и накапливаются в желчи. При приёме жирной пищи эндокринные клетки эпителия тонкого кишечника вырабатывают гормон холецистокинин, который стимулирует сокращение желчного пузыря, и желчь изливается в тонкий кишечник, эмульгирует жиры и обеспечивает их переваривание и всасывание.

Когда первичные желчные кислоты достигают нижних отделов тонкой кишки, они подвергаются действию ферментов бактерий, которые сначала отщепляют глицин и таурин, а затем удаляют 7α-гидроксильную группу. Так образуются вторичные желчные кислоты: дезоксихолевая и литохолевая.

Рис. А. Конъюгация желчных кислот в печени. Б. Образование вторичных желчных кислот в кишечнике.

Около 95% желчных кислот всасывается в подвздошной кишке и через воротную вену возвращается в печень, где они опять конъюгируются с таурином и глицином и выделяются в желчь. В результате в желчи находятся и первичные и вторичные желчные кислоты. Весь этот путь называется энтерогепатическая циркуляция желчных кислот. Каждая молекула жёлчных кислот за сутки проходит 5- 8 циклов, и около 5% жёлчных кислот выделяется с фекалиями.

Рис. Энтерогепатическая циркуляция желчных кислот.

Желчные кислоты образуют соли Na и K, которые являются главными эмульгаторами жиров (они окружают каплю жира и способствуют её дроблению на множество мелких капелек), делая их доступными для действия липаз, содержащихся в соке поджелудочной железы.

Особенности действия

Лингвальная липаза

Обнаружена у грудных детей. Катализирует расщепление эмульгированных триглицеридов грудного молока в желудке. У взрослых малозначима.

Желудочный сок

    Лингвальная липаза

2. Желудочная липаза

В составе жидкой пищи (грудное молоко), поступившей из полости рта. Катализирует расщепление эмульгированных триглицеридов грудного молока. У взрослых малозначима.

Катализирует расщепление эмульгированных триглицеридов

Сок поджелудочной железы

1.Панкреатическая липаза

2.Колипаза

3. Моноглицеридлипаза

4. Фосфолипаза А, лецитиназа

5. Холестеролэстераза

В полости тонкой кишки катализирует расщепление эмульгированных жёлчью триглицеридов. В результате гидролиза образуются сначала 1.2 и 2.3-диглицериды, а затем 2-моноглицериды. Из одной молекулы триглицерида образуется две молекулы жирных кислот. Может быть адсорбирована в гликокаликсе щеточной каймы энтероцитов и участвовать в мембранном пищеварении.

Во взаимодействии с липазой катализирует расщепление триглицеридов. В результате гидролиза образуются жирные кислоты, глицерин и моноглицериды.

Адсорбируется в гликокаликсе щеточной каймы энтероцитов и участвовует в мембранном пищеварении. Катализирует гидролиз 2-моноглицерида. В результате гидролиза образуются глицерин и жирная кислота.

Катализирует расщепление лецитина. В результате гидролиза образуются диглицерид и холинфосфат.

Катализирует расщепление эфиров колестерола. В результате гидролиза образуются холестерол и жирная кислота.

Не обнаружены

Липолитические ферменты проявляют максимальную активность при рН= 7,8-8,2.

У взрослого человека в ротовой полости жиры не подвергаются химическим изменениям из-за отсутствия липолитических ферментов.

Отделом, в котором переваривается основная часть липидов, является тонкий кишечник, где имеется слабощелочная среда, оптимальная для активности липазы. Нейтрализация попавшей с пищей соляной кислоты осуществляется бикарбонатами, содержащимися в панкреатическом и кишечном соках:

HCl + NaHCO 3 →NaCl + H 2 CO 3

Затем выделяется углекислый газ, который вспенивает пищу и способствует процессу эмульгирования.

Н + + НСО 3 - → Н 2 СО 3 → Н 2 О + СО 2 .

Панкреатическая липаза выводится в двенадцатиперстную кишку в виде неактивного профермента - пролипазы. Активация пролипазы в активную липазу происходит под действием жёлчных кислот и другого фермента сока поджелудочной железы - колипазы.

Колипаза попадает в полость кишечника в неактивном виде, и частичным протеолизом под действием трипсина превращается в активную форму. Колипаза гидрофобным доменом связывается с поверхностью эмульгированного жира. Другая часть молекулы колипазы способствует формированию такой конфигурации молекулы панкреатической липазы, при которой активный центр фермента максимально приближен к молекулам жиров, поэтому скорость реакции гидролиза резко возрастает.

Рис. Действие панкреатической липазы.

Панкреатическая липаза – гидролаза, отщепляющая с высокой скоростью жирные кислоты из α-положения молекулы, поэтому основными продуктами гидролиза ТАГ являются 2-МАГ и жирные кислоты.

Особенностью панкреатической липазы является то, что она действует ступенчато: сначала отщепляет одну ВЖК в α-положении, и из ТАГ образуется ДАГ, затем отщепляет вторую ВЖК в α-положении, и из ДАГ образуется 2-МАГ.

Рис. Расщепление ТАГ панкреатической липазой.

Особенности переваривания ТАГ у грудных детей

У грудных детей и детей младшего возраста основной пищей служит молоко. Молоко содержит жиры, в состав которых входят в основном жирные кислоты с короткой и средней длиной цепей (4-12 атомов углерода). Жиры в составе молока находятся уже в эмульгированном виде, поэтому они сразу же доступны для гидролиза ферментами. На жиры молока в желудке детей действует липаза, которая синтезируется в железах языка (липаза языка).

Кроме того, в желудке детей грудного и младшего возраста вырабатывается желудочная липаза, которая активна при нейтральном значении рН, характерном для желудочного сока детей. Эта липаза гидролизует жиры, отщепляя, в основном, жирные кислоты у третьего атома углерода глицерола. Далее гидролиз жиров молока продолжается в кишечнике под действием панкреатической липазы. Жирные кислоты с короткой цепью, как водорастворимые, всасываются частично уже в желудке. Остальные жирные кислоты всасываются в тонком кишечнике.

Рис. Переваривание жиров в ЖКТ.

Переваривание фосфолипидов

В переваривании фосфолипидов участвуют несколько ферментов, синтезирующихся в поджелудочной железе: фосфолипаза А1, А2, С и D.

Рис. Действие фосфолипаз.

В кишечнике фосфолипиды подвергаются прежде всего расщеплению с помощью фосфолипазы А2, катализирующей гидролиз сложноэфирной связи во 2 положении, с образованием лизофосфолипида и жирной кислоты.

Рис. Образование глицерофосфохолина под действием фосфолипаз.

Фосфолипаза А2секретируется в виде неактивной профосфолипазы, которая активируется в тонкой кишке путём частичного протеолиза трипсином. Коферментом фосфолипазы А2 являетсяCa 2+ .

В дальнейшем лизофосфолипид подвергается действию фосфолипазы А1, катализирующей гидролиз сложноэфирной связи в 1 положении, с образованием глицерофосфатидила, связанного с азотсодержащим остатком (серин, этаноламин, холин), который

1) либо расщепляется по действием фосфолипаз C иD до глицерина, H 3 PO 4 и азотистых оснований (холин, этаноламин и т. д.)

2) либо остаётся глицерофолфолипидом (фосфолипазы С и D не работают) и включается в состав мицелл.

Переваривание эфиров холестерола

В составе пищи холестерол находится в основном в виде эфиров. Гидролиз эфиров холестерола происходит под действием холестеролэстеразы - фермента, который также синтезируется в поджелудочной железе и секретируется в кишечник.

Холестеролэстераза вырабатывается в неактивном состоянии и активируется трипсином и Ca 2+ .Продукты гидролиза (холестерол и жирные кислоты) всасываются в составе смешанных мицелл.

Рис. Гидролиз эфиров холестерола под действием холестеролэстеразы.

Мицеллообразование

Растворимые в воде глицерин, Н 3 РО 4 , жирные кислоты с числом углеродных атомов меньше 10, азотсодержащие вещества всасываются диффузно в воротную вену.

Остальные продукты гидролиза образуют мицеллу, которая состоит из 2-х частей: внутренней - ядра, в которое входят ХС, жирные кислоты с числом углеродных атомов больше 10, МАГ, жирорастворимые витамины и наружной – внешней оболочки, в которую входят соли желчных кислот. Соли желчных кислот гидрофобной группировкой обращены внутрь мицеллы, а гидрофильной – наружу, к диполям воды.

Стабильность мицелл обеспечивается в основном солями жёлчных кислот. Мицеллы сближаются со щёточной каймой клеток слизистой оболочки тонкого кишечника, и липидные компоненты мицелл диффундируют через мембраны внутрь клеток. Вместе с продуктами гидролиза липидов всасываются жирорастворимые витамины A, D, Е, К и соли жёлчных кислот.

Всасывание жирных кислот со средней длиной цепи, образующихся, например, при переваривании липидов молока, происходит без участия смешанных мицелл. Эти жирные кислоты из клеток слизистой оболочки тонкого кишечника попадают в кровь, связываются с белком альбумином и транспортируются в печень.

Рис. Строение мицеллы.

Мицеллы желчных солей выполняют функцию транспортных посредников для переноса моноглицеридов и свободных жирных кислот к щеточной каемке кишечного эпителия, иначе моноглицериды и свободные жирные кислоты будут нерастворимы. Здесь моноглицериды и свободные жирные кислоты всасываются в кровь, а желчные соли высвобождаются обратно в химус, чтобы быть вновь использованными для процесса переноса.

Ресинтез жиров в слизистой оболочке тонкого кишечника

После всасывания продуктов гидролиза жиров жирные кислоты и 2-моноацилглицеролы в клетках слизистой оболочки тонкого кишечника включаются в процесс ресинтеза с образованием триацилглицеролов. Жирные кислоты вступают в реакцию этерификации только в активной форме в виде производных коэнзима А, поэтому первая стадия ресинтеза жиров - реакция активации жирной кислоты:

HS КоА + RCOOH + АТФ → R-CO ~ КоА + АМФ + Н 4 Р 2 О 7 .

Реакция катализируется ферментом ацил-КоА-синтетазой (тиокиназой). Затем ацил~КоА участвует в реакции этерификации 2-моноацилглицерола с образованием сначала диацилглицерола, а затем триацилглицерола. Реакции ресинтеза жиров катализируют ацилтранеферазы.

Рис. Образование ТАГ из 2-МАГ.

В реакциях ресинтеза жиров участвуют, как правило, только жирные кислоты с длинной углеводородной цепью. В ресинтезе жиров участвуют не только жирные кислоты, всосавшиеся из кишечника, но и жирные кислоты, синтезированные в организме, поэтому по составу ресинтезированные жиры отличаются от жиров, полученных с пищей. Однако возможности "адаптировать" в процессе ресинтеза состав пищевых жиров к составу жиров организма человека ограничены, поэтому при поступлении с пищей жиров с необычными жирными кислотами, например бараньего жира, в адипоцитах появляются жиры, содержащие кислоты, характерные для бараньего жира (насыщенные разветвлённые жирные кислоты). В клетках слизистой оболочки кишечника происходит активный синтез глицерофосфолипидов, необходимых для формирования структуры липопротеинов - транспортных форм липидов в крови.