Главная · Сон · Фермент теломераза – потенциальный опухолевый маркер и мишень противоопухолевой терапии. Наше супер тело и его невероятные коды

Фермент теломераза – потенциальный опухолевый маркер и мишень противоопухолевой терапии. Наше супер тело и его невероятные коды

Теломеры представляют собой повторяющуюся последовательность ДНК на концах хромосом. Всякий раз, когда клетка воспроизводится, теломеры становятся короче. В конечном счёте, теломеры изнашиваются, и клетка более не способна делиться и омолаживаться, в результате чего здоровье клетки ухудшается, что увеличивает риск болезни. В итоге клетка погибает.

В 1962 американский учёный Л. Хейфлик произвёл переворот в области биологии клетки, создав концепцию теломер, известную как лимит Хейфлика. По мнению Хейфлика, максимальная (потенциально) продолжительность человеческой жизни составляет сто двадцать лет – это возраст, когда слишком большое количество клеток уже не способно к делению, и организм умирает.

Механизм, посредством которого питательные вещества влияют на длину теломер, заключается в том, что еда оказывает воздействие на теломеразу, энзим, добавляющий теломерные повторы к концам ДНК.

Теломеразе посвящены тысячи исследований. Они известны тем, что поддерживают геномную стабильность, предотвращают нежелательную активацию путей повреждения ДНК и регулируют старение клеток.

В 1984 Элизабет Блэкбёрн, профессор биохимии и биофизики в Калифорнийском университете в Сан-Франциско, обнаружила, что энзим теломераза способен удлинять теломеры, синтезируя ДНК из РНК-праймера. В 2009 Блэкбёрн, Кэрол Грейдер и Джек Шостак получили Нобелевскую премию в области физиологии и медицины за открытие того, как теломеры и энзим теломераза защищают хромосомы.

Вполне возможно, что знание о теломерах даст нам возможность значительно увеличить продолжительности жизни. Естественно, исследователи занимаются разработкой фармацевтических средств такого рода, но существуют достаточные свидетельства того, что простой образ жизни и правильное питание тоже эффективны.

Это радует, поскольку короткие теломеры суть фактор риска – они приводят не только к смерти, но и к многочисленным заболеваниям.

Так, укорачивание теломер связывают с заболеваниями, список которых приведён ниже. Исследования на животных показали, что многие заболевания могут быть устранены благодаря восстановлению функции теломеразы. Это и пониженная сопротивляемость иммунной системы инфекциям, и диабет второго типа, и атеросклеротическое повреждение, а также нейродегенеративные болезни, тестикулярная, селезёночная, кишечная атрофия.

Результаты всё большего числа исследований показывают, что определённые нутриенты играют значительную роль в деле защиты длины теломер и оказывают значительное влияние на продолжительность жизни, в их числе – железо, жиры омега-3, а также витамины E и C, витамин D3, цинк, витамин B12.

Ниже приведено описание некоторых питательных веществ такого рода.

Астаксантин

Астаксантин обладает прекрасным противовоспалительным действием и эффективно защищает ДНК. Исследования показали, что он способен защищать ДНК от повреждения, вызванного гамма радиацией. Астаксантин обладает множеством уникальных черт, которые делают его выдающимся соединением.

Например, это самый мощный окислитель-каротиноид, способный «вымывать» свободные радикалы: астаксантин в 65 раз эффективнее витамина C, в 54 раза – бета-каротина и в 14 раз – витамина E. Он в 550 раз более эффективен, нежели витамин E, и в 11 раз более эффективен, нежели бета-каротин, в деле нейтрализации синглетного кислорода.

Астаксантин преодолевает и гемоэнцефалический, и гематоретинальный барьер (бета-каротин и каротиноид ликопин на это не способны), благодаря чему мозг, глаза и центральная нервная система получают антиокислительную и антивоспалительную защиту.

Другое свойство, отличающее астаксантин от иных каротиноидов, выражается в том, что он не может действовать как проокислитель. Многие антиоксиданты действуют как прооксиданты (т. е., они начинают окислять, вместо того, чтобы противодействовать окислению). Однако астаксантин, даже в больших количествах, не действует как окислитель.

Наконец, одно из самых важных свойств астаксантина – его уникальная способность защищать всю клетку от разрушения: как водорастворимую, так и жирорастворимую её части. Другие антиоксиданты влияют лишь либо на одну, либо на другую часть. Уникальные физические характеристики астаксантина позволяют ему находиться в клеточной мембране, защищая также внутреннюю область клетки.

Прекрасным источником астаксантина является микроскопическая водоросль Haematococcus pluvialis, растущая на Шведском архипелаге. Кроме того, астаксантин содержит старая добрая черника.


Убихинол

Убихинол - восстановленная форма убихинона. По сути, убихинол – это убихинон, присоединивший к себе молекулу водорода. Содержится в брокколи, петрушке и апельсинах.

Ферментированные продукты/пробиотики

Совершенно очевидно, что диета, состоящая, преимущественно, из переработанных продуктов, сокращает продолжительность жизни. Исследователи считают, что в будущих поколениях возможны множественные генетические мутации и функциональные расстройства, приводящие к болезням – по той причине, что нынешнее поколение активно потребляет искусственные и переработанные продукты.

Отчасти, проблема заключается в том, что переработанные продукты, изобилующие сахаром и химическими веществами, эффективно уничтожают кишечную микрофлору. Микрофлора влияет на иммунную систему, которая, является естественной защитной системой тела. Антибиотики, стресс, искусственные подсластители, хлорированная вода и многие другие явления также уменьшают объём пробиотиков в кишечнике, что предрасполагает организм к болезням и преждевременной старости. В идеале, рацион должен включать традиционно культивируемые и ферментированные продукты.

Витамин K2

Этот витамин вполне может быть «ещё одним витамином D», поскольку исследования показывают многочисленные блага этого витамина для здоровья. Большинство людей получает адекватное количество витамина K2 (поскольку он синтезируется самим организмом в тонком кишечнике), которое позволяет поддерживать коагуляцию крови на адекватном уровне, но этого количества не достаточно, чтобы защитить организм от серьёзных проблем со здоровьем. Например, проведённые в последние годы исследования показывают, что витамин K2 может защищать организм от рака предстательной железы. Витамин K2 также благотворен для здоровья сердца. Содержится в молоке, сое (в больших количествах – в натто).

Магний

Магний играет важную роль в деле воспроизводства ДНК, его восстановлении и синтезе рибонуклеиновой кислоты. Долгосрочный дефицит магния приводит к сокращению теломер в телах крыс и клеточной культуре. Недостаток ионов магния негативно влияет на здоровье генов. Нехватка магния понижает способность тела восстанавливать повреждённую ДНК и вызывает в хромосомах аномалии. В целом, магний влияет на длину теломер, поскольку связан со здоровьем ДНК и её способностью восстанавливаться, а также повышает сопротивляемость организма окислительному стрессу и воспалению. Содержится в шпинате, спарже, пшеничных отрубях, орехах и семечках, фасоли, зелёных яблоках и салате, в сладком перце.

Полифенолы

Полифенолы – мощные антиокислители, способные замедлять процесс.

Биологи экспериментально подтвердили способ, которым можно вернуть молодость всем тканям организма. Им удалось запустить работу фермента, который откручивает обратно часы клеточного времени и старения.

Преодолеть старение органов и тканей у мышей путем надстройки теломер в стволовых клетках удалось ученым из медицинского факультета Гарварда (Harvard Medical School, Бостон, США). Теломеры -- повторы коротких последовательностей нуклеотидов на концах хромосом -- рассматривают как маркер старения. При каждом делении клетки они укорачиваются из-за неспособности фермента ДНК-полимеразы синтезировать копию ДНК с самого конца.Остается неудвоившийся конец, который не попадает в дочернюю клетку.

теломераза Фермент, надстраивающий теломеры при делении клетки. Это обратная транскриптаза, использующая матрицу РНК для синтеза последовательности ДНК, с помощью которой удлиняется теломера.

Теломеры могут надстраиваться до прежней длины при помощи специального фермента -- теломеразы, которая работает в стволовых и половых клетках. Теломераза привлекает большое внимание специалистов, занимающихся проблемами старения. Но использовать теломеразный механизм, чтобы повернуть вспять деградацию тканей, до сих пор еще не удавалось.

Стареющие мутанты

Роналд Депиньо (Ronald A. DePinho) и его команда работали на мутантных мышах. У них теломераза не работала даже в тех клетках, в которых должна -- в стволовых и половых. Выделенные из них фибробласты могли делиться не более четырех-пяти раз, после чего деградировали. А у самих мышей во вполне молодом возрасте появлялись признаки старения: деградировали семенники, селезенка, исчезла способность к размножению. В головном мозге затормозился нейрогенез: снизилось число нейральных стволовых клеток и их превращение в нейроны и глиальные клетки – олигодендроциты. А из-за недостатка последних длинные отростки нейронов – аксоны потеряли часть своих изоляционных миелиновых оболочек. В итоге мозг мутантов стал меньше и легче по сравнению с мозгом нормальных мышей. Кроме того, у мутантов нарушилось обоняние (как обычно происходит у старых животных), так как обонятельный эпителий деградировал.

Атрофия обратима

апоптоз Запрограммированная клеточная смерть. Форма гибели клетки, при которой она уменьшается в размерах, хроматин конденсируется и фрагментируется, мембрана уплотняется, и клеточное содержимое уничтожается без выхода в окружающую среду.

миелиновая оболочка Электроизолирующая оболочка, покрывающая аксоны многих нейронов. Ее образуют глиальные клетки, в центральной нервной системе - олигодендроциты. Они накручиваются на аксон, покрывая его множественными слоями мембраны. Изоляция намного увеличивает скорость проведения нервного импульса.

Эксперимент показывает, считают авторы, что стволовые клетки взрослого организма, находящиеся в дремлющем состоянии, можно вернуть к активной жизни и размножению, если активизировать восстановление теломер. В данном эксперименте моделью послужили мутантные мыши с неработающей теломеразой, но то же самое происходит и при возрастных изменениях в организме. Работа продемонстрировала принципиальную возможность омоложения тканей путем активизации теломеразы. Хотя на этом пути надо быть очень осторожными, так как теломераза активна в раковых клетках. В данном эксперименте ученые не столкнулись с раковым перерождением тканей, однако исключить такую возможность нельзя.

Старение всегда считалось физиологическим процессом, не требующим вмешательств. Однако человек пытается отодвинуть этот рубеж своей жизни любыми способами. Современные ученые настаивают, что старение — это эпигенетическая болезнь, и ее возможно лечить. Начинать можно с любого возраста.

Насколько можно быть моложе?

Правильный подход остановит старение и обеспечит долголетие на максимально возможный срок. Это значит, каждый человек может прожить до 100 лет и более без болезней, с ясным умом. Внешняя молодость зависит от более сложных факторов, но обе области изучения подвластны эпигенетикам. Однако, даже то, что зависит от самого человека, поможет ему выглядеть моложе на 10-20 лет своего реального возраста. При этом, чем старше человек, тем больше будет эта разница.

Следует отметить, что без генной предрасположенности организму не обойтись. Однако гены помогают лишь на 30%, остальное зависит от самого человека. Именно поэтому, если наследственность плохая, не стоит «опускать руки». Её можно улучшить доступными способами, добиться долгой и здоровой жизни собственными усилиями.

Всё происходит в клетках

В некотором смысле человек сам является эпигенетиком по отношению к своему организму. Ведь от качества жизни во многом зависит способность клеток долго жить и правильно делиться. Можно сказать, что любая клетка организма по своему характеру — ипохондрик, она только и ждет момента, когда сможет совершить «самоубийство». Живет она, благодаря системе налаженных биохимических сигналов. Именно они должны обеспечиваться человеком при помощи правильного образа жизни. При определённых условиях клетка получает сигнал о самоуничтожении и исполняет его молниеносно. А ведь он может быть ошибочным.

Кто починит поломанные клетки?

Самоуничтожение (апоптоз) — запрограммированный процесс, но иногда он даёт сбой по отношению к здоровым клеткам, которым ещё необходимо функционировать. Всё происходит на уровне ДНК в ядре клетки. А пока клетка живет, в её ДНК также происходят поломки и ремонт. Собственные белки восстанавливают поврежденные участки спирали, которые появляются довольно часто. Эти белки можно назвать: восстановители ДНК, «хирурги», «ремонтники». Но не всегда они делают работу правильно.

Порой «восстановители», наоборот, разрушают спираль, и такая группа белков «работает» в каждой клетке организма. С одной стороны их роль невозможно переоценить: они разрезают, вырезают, лечат, склеивают нить ДНК. Однако вред «восстановителей» так же огромен, как и польза. За разорванный участок ДНК они принимают естественные концы хромосом и склеивают их с другими связями. Так нарушается генетическая цепочка, что приводит к развитию тяжёлых заболеваний.

Теломеры как фактор долголетия

Однако хромосомы защитились от таких нападок «хирургов»: на их концах расположены теломеры, которые предотвращают случайное склеивание. Роль теломеров — охватить нить ДНК и защитить от несанкционированных действий «восстановителей».

Теломеры — особые белки, которые укорачиваются в течение жизни человека. Это происходит во время каждого деления клетки: от теломеров словно отщипывается маленький кусочек, и каждый из них становится короче. Почему это важно для нашего долголетия? Когда теломеры укорачиваются до такой степени, что просто кончаются (исчезают), клетка умирает, так как теряет способность делиться. В масштабах целого организма это приводит к разрушительным процессам: болезням, старости, смерти.

Почему укорачиваются теломеры или формула старения

Учёные объясняют этот факт эволюционными изменениями ДНК. У бессмертных организмов данная молекула замкнута в кольцо. Например, у бактерий. Практически у всех живых существ в ходе эволюции она разорвалась и стала линейной. При этом ген, делающий копию белка для синтеза, продолжал работать в прежнем режиме. В связи с этим кончики хромосом оставались некопированными, и каждая новая молекула получалась короче оригинала. Это и есть — формула старения. Она образовалась эволюционным способом.

Кто защитит теломеры?

Однако организмы — это усовершенствованные системы, в которых предусмотрена ещё одна защита. В состав каждой теломеры входит фермент теломераза.

Его роль — удлинять ДНК и теломеру после каждого деления клетки. Однако происходит это не во всех клетках.

Лишь следующие клетки подвержены удлинению теломеров:

- стволовые,

- раковые,

- яйцеклетки,

- предшественники сперматозоидов.

Именно они остаются молодыми на протяжении жизни организма. Таким образом, теломераза является источником вечной молодости. Пока этот фермент присутствует в клетке, её теломеры восстанавливаются («наращиваются»). Этот факт доказывает опыт ученых: если выключить ген, который программирует синтез теломеразы, теломеры погибают из-за стремительного укорачивания за 25 делений клетки.

Бессмертие создано, но…

Таким образом, молодость и долголетие зависят от активности гена, кодирующего теломеразы. Интересно, что ученые научились искусственно добавлять в клетку теломеразу и продлевать её жизнь до бесконечности. Она становится абсолютно бессмертной. Почему же этот опыт нельзя применить к человеку? Причина — серьёзный побочный эффект.

Главное условие старения — стресс

Итак, человек стареет, когда в его клетках не хватает или полностью отсутствует фермент теломераза. Если добавлять его самостоятельно человек ещё не может, то известны внешние факторы, которые уменьшают количество фермента. В первую очередь это — стресс.

Увеличение гормона стресса в крови приводит к данным последствиям, и человек начинает быстро стареть. Это доказывает факт, что на длину теломеров можно влиять. Надо полностью исключить или ограничить факторы стресса в своей жизни.

Для противодействия стрессу необходимы:

- здоровое питание,

- двигательная и умственная активность,

- наличие здоровых факторов расслабления (полноценный сон, релакс, медитация),

- положительное эмоциональное равновесие.

Как самому удлинить теломеры?

Сегодня учёными доказано, что длина теломеров больше у тех людей, кто регулярно занимается спортом с невысокими нагрузками. При отсутствии продолжительных стрессов такой спорт можно назвать главным условием долголетия без помощи генетических вмешательств.

Конкретно это:

- бег трусцой,

- велосипедная езда,

- пешие прогулки.

Как происходит влияние? Спорт оказывает положительное действие на эпигеном человека. И, значит — на обмен веществ и иммунную систему.

А именно действительно:

- повышается активность и количество теломеразы,

- клетки живут дольше (вместо «самоубийства»).

Питание — главный фактор долгой жизни

Кроме спорта неоценимое влияние оказывает здоровое питание.

Диета включает в себя:

- потребление сырых овощей,

- малое потребление жиров (но не отказ от них),

- отказ от искусственного рафинированного сахара.

Препятствия на пути к долгой жизни

На основе вышесказанного можно предположить, что для достижения, если не вечной молодости, то, хотя бы, долгой жизни, достаточно соблюдать вышеперечисленные рекомендации. Это, конечно, позволит выглядеть моложе своих лет, быть бодрее и меньше болеть приобретёнными заболеваниями.

Однако следует помнить такие факторы:

1. Теломеразы удлиняют теломеры лишь в следующих клетках: предшественниках сперматозоидов, яйцеклетках, стволовых и раковых. Именно поэтому, в определённом смысле, эти клетки бессмертные.

2. Организм человека состоит, в основном, из соматических клеток. В них теломераза свою молодильную функцию не выполняет.

Достижения учёных

Заставить фермент это делать может лишь генная инженерия внедрением генов, кодирующих теломеразу на необходимую «работу».

Сегодня ученые достигли хороших результатов. Они умеют встраивать ген теломеразы в клетки:

- кожи,

- глаз,

- сосудов.

На основе вышесказанного можно отметить, что найден «эликсир молодости». Однако мешает этому тот факт, что фермент «работает» и в раковых клетках. Таким образом, в погоне за молодостью человек может приобрести онкологическое заболевание. Ведь именно теломераза дала раковым клеткам возможность делиться вечно. А это значит, что, достигнув вечной молодости, человек умрёт от рака.

Второй довод в пользу этого мнения: долгая жизнь возможна не только способом активации теломераз, но и выключением гена, который даёт клетке команду самоубийства. Этот ген — белок p66Shc. Однако и здесь присутствует аналогичная проблема — перестанут самоуничтожаться клетки, в которых возможно образование рака.

Круг сомкнулся: отключение гена апоптоза продлевает жизнь, но приводит к образованию онкологического процесса. Следует помнить, что болезнь образуется не только в результате действия внешних факторов, но и внутренних поломок, которых в огромном и сложном человеческом организме происходит великое множество.

При этом следует отметить: процент смерти от рака увеличится, но такая участь постигнет не все организмы. Таким образом, погоня за молодостью и долголетием методами генной инженерии превращается в игру в рулетку.

Итак, перед человечеством стоит 2 задачи, которые нельзя решать отдельно:

1. Продление жизни.

2. Исключение негативных последствий.

И, значит, пока люди не научатся побеждать рак, о существенном продлении молодости и жизни на генном уровне говорить не приходится.

Другие рычаги влияния на жизнь

Поговорим о других генах, которые определяют продолжительность жизни человека. А также о том, как на них можно влиять самостоятельно.

Гены Мафусаила: носителям можно всё

Кроме фермента теломеразы, которым можно управлять при помощи кодирующего гена, на продление молодости оказывают влияние гены Мафусаила. Название этим белкам дано по аналогии с библейским персонажем: Мафусаилом, старейшим человеком, прожившим 969 лет. Имя Мафусаил стало нарицательным. Его применяют, когда говорят о долгожителях.

Известные гены Мафусаила:

- ADIPOQ,

- CETP,

- ApoC3

встречаются примерно у 10% людей. Счастливчикам можно меньше заботиться о регуляции уровня инсулина в крови, концентрации холестерина и других веществ в организме. Однако поддерживать здоровье всё-равно необходимо, иначе природный фактор — подарок предков — не поможет, так как ген не сможет самостоятельно обеспечивать долголетие.

К долголетию через инсулин

Сегодня ученым необходимо определить белки, которые образуются под влиянием генов Мафусаила. На их основе можно создать долгожданный «эликсир». Однако точно не известно, как именно он будет действовать. И следует помнить о главном препятствии на пути генной инженерии: человечество ещё не способно победить рак.

Отмечено, что гены Мафусаила воздействуют на рецептор инсулина. Вследствие этого рецептор сигнализирует о пониженном уровне сахара, независимо от его реальных показателей. Этот факт поддерживает здоровье на высоком уровне в течение жизни человека и является мощным стимулом долголетия (доказано на примере людей-долгожителей, перешагнувших 100-летний возраст).

Ген Мафусаила, который регулирует реакцию организма на инсулин, называется FOXO3A. Следует отметить, что именно поэтому диабетические лекарства, снижающие уровень глюкозы в крови, продлевают жизнь. К таким относится, например, метформин.

Как при помощи этих знаний влиять на продолжительность жизни?

Посредством возможностей генной инженерии, от которых зависит активность:

- НАД+,

- теломераз,

- генов Мафусаила,

- рецепторов инсулина.

Повышаем НАД+ и сиртуины самостоятельно

Воздействовать на них можно через транскрипционный фактор, который является маркером контрольных участков гена в синтезе белков. Следует отметить огромную роль в продлении молодости кофермента НАД+ (NAD+). Это — окисленная форма никотинамидадениндинуклеотида. Вещество влияет на активность молодильных белков сиртуинов. Именно они регулируют фермент теломеразу: чем больше НАД+, тем активнее сиртуины, тем дольше живёт организм. И именно через них человек может удлинять теломеры без генетиков, ведь гормон инсулин и ИФР-1 являются антагонистами сиртуинов, а его можно контролировать самостоятельно.

Повышают уровень НАД+ и, значит, сиртуинов:

- низкокалорийное питание,

- лекарство: никотинамид рибозид.

Важно: питание должно включать все необходимые микроэлементы, витамины при малом количестве калорий (половина нормы). Норма составляет 2000-3500 Ккал/сутки. На все эти ферменты, гены, транскрипционные факторы влияют: гормон инсулин и ИФР-1 (инсулиноподобный фактор роста).

Такое же полезное действие оказывают некоторые продукты питания. А именно:

- черника,

- арахис,

- красный виноград,

- красное сухое вино.

Это возможно, благодаря природному веществу ресвератрол.

Пользу ресвератрола невозможно переоценить, он оказывает на организм действия следующего характера:

- противоопухолевое,

- противовоспалительное,

- снижающее сахар в крови,

- защищающее сосуды сердца,

- компенсирующее влияние жирной диеты.

Ресвератрол — не панацея

Суть действия вещества: нейтрализовать свободные радикалы кислорода, ведь они способствуют развитию онкологических заболеваний. Следует отметить, что при радиотерапии рака лёгких, ресвератрол оказывает обратное действие. Вещество увеличивает количество раковых клеток. И ещё: выводы учёных относительно ресвератрола подтверждены на мышах, но не на людях.

Следует отметить и другие лекарственные препараты, продлевающие жизнь:

- карведилол,

- метформин,

- телмисартан,

- витамины Д и В6,

- глюкозамин сульфат,

- никотинамид рибозид.

Примечательно: чем старее клетка, тем меньше в ней содержится сиртуинов, а больше — ацетильных групп. Именно это приводит к изменению структуры ДНК и, как следствие, к тяжёлым заболеваниям. Отсюда вывод: на старение клетки оказывают влияние эпигенетические факторы. Значит, человек может самостоятельно воздействовать на фактор старения.

Особенности питания, о которых надо помнить

Итак, омолаживающий эффект в живых организмах ярко выражен при следующих условиях:

- низкий уровень инсулина и ИФР-1,

- низкокалорийная умеренная диета постоянно.

Важно: следует отличать низкокалорийное и неполноценное питание. Во втором случае недостаток витаминов и микроэлементов быстро приводит к развитию различных патологий и сокращению жизни.

Спорт, без которого ничего не будет

Альтернативой целенаправленному недоеданию является спорт. Физкультура позволяет сжигать лишнюю энергию, одновременно с этим — снижать уровень инсулина и повышать активность генов молодости (сиртуинов). Но всё же, занятия не означают, что позволено забыть о здоровой диете.

Полезные виды спорта при условии регулярных занятий:

- бег трусцой 30-40 минут,

- велосипедная езда не менее 1 часа,

- плавание, активные спортивные игры.

Совет: лучше бегать утром натощак. Пищу принимать через 1 час после занятий спортом.

Еда, с которой будет долголетие

Так ли безопасны Омега-3?

Стоит сказать о полезных Омега-3 кислотах, которые в огромном количестве продаются фармацевтикой и употребляются людьми. Доказан их эффект на теломеры: кислоты данной группы замедляют степень укорачивания хромосом. Однако есть и отрицательный момент, который также доказан учёными: эти полиненасыщенные жиры в клетках организма быстро окисляются. Вследствие этого приводят к «поломке» клеток, ускоренному старению, развитию рака.

Оливковое масло для долгожительства

Более безобидными и не менее полезными учёные называют мононенасыщенные жирные кислоты. Больше всего их содержится в оливковом масле. Совет: принимать оливковое масло лучше всего в сыром виде. Покупать следует продукт холодного первого отжима нефильтрованный (Extra Virgin) испанского, греческого, итальянского производства. Масло нельзя нагревать. От этого продукт разлагается, пропадают целебные качества, появляется канцерогенный фактор.

Для сравнения: подсолнечное масло содержит больше, чем оливковое, витамина Е; а льняное — больше ненасыщенных жирных кислот Омега-3. Льняное масло также необходимо употреблять в сыром виде, без нагревания. Именно поэтому в меню должны присутствовать разные растительные масла.

Самая полезная пища, доказанно продлевающая жизнь:

- кефир,

- сырая морковь,

- сырая капуста брокколи,

- жирная рыба (готовить на пару),

- орехи фундук, кунжут, семена льна,

- оливковое масло холодного отжима,

- сырые лук и чеснок,

- тёмные сорта винограда,

- свежая зелень: петрушка, укроп, — фасоль, гречка, овсянка (каши надо запаривать), — фрукты: черника, ежевика, чернослив, смородина, — также: вишня, гранат, клубника, яблоки кислых сортов.

Прогноз на старость

Постоянное применение рекомендаций по продлению жизни позволит добиться омоложения организма, меньше болеть или исключить заболевания полностью. Без генной инженерии это работает на 100%, если есть предрасположенность, и, если обеспечивается умственная и физическая активность человека. Однако и загубить наследственность очень легко, если образ жизни не соответствует данным рекомендациям. Начать можно прямо сейчас. Интересные факты: организм полностью «забывает» о вредном факторе курения через 5 лет после отказа от привычки. Организм способен восстановиться и после привычки «приложиться» к алкоголю. Организм — необыкновенно чуткий, он благодарно реагирует на любую естественную заботу улучшением внешности и увеличением срока жизни.

Фото, использованные в статье, взяты в основном из интернета.

«Нестареющая» Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе

В 2009 году Нобелевская премия по физиологии и медицине вручена трём американским учёным, разрешившим важную биологическую проблему: как хромосомы при делении клетки копируются полностью , без того, чтобы ДНК на их кончиках укорачивалась? В результате их исследований стало известно, что «защитным колпачком» для хромосом служат особым образом устроенные окончания ДНК - теломеры , достройкой которых занимается специальный фермент - теломераза .

В отличие от бактерий, имеющих кольцевую хромосому, хромосомы эукариот устроены линейно, и концы ДНК «подрезаются» при каждом делении. Чтобы избежать порчи важных генов, окончания каждой хромосомы защищены теломерами ..

Длинная нитеобразная молекула ДНК - главный компонент хромосом, несущий генетическую информацию, - с обоих концов закрыта своего рода «заглушками» - теломерами . Теломеры представляют собой участки ДНК с уникальной последовательностью и защищают хромосомы от деградации. Это открытие принадлежит двум лауреатам Нобелевской премии по физиологии и медицине за 2009 г. - Элизабет Блэкберн (Elizabeth Blackburn ), уроженке США и в настоящее время сотруднице Университета Калифорнии (Сан-Франциско, США), и Джеку Шостаку (Jack Szostak ), профессору Института Ховарда Хьюза . Элизабет Блэкберн в сотрудничестве с третьим лауреатом премии этого года - Кэрол Грейдер (Carol Greider ), сотрудницей Университета Джона Хопкинса , - открыла в 1984 году фермент теломеразу , синтезирующий ДНК теломер (и тем самым достраивая их после неизбежного при каждом копировании хромосомы укорачивания). Таким образом, исследования, отмеченные премией в этом году (около 975 тысяч евро, поделенные поровну между лауреатами), объясняют, как теломеры защищают кончики хромосом, и как теломераза синтезирует теломеры.

Давно отмечено, что старение клетки сопровождается укорачиванием теломер. И, наоборот, в клетках с высокой активностью теломеразы, достраивающей теломеры, длина последних остается неизменной, и старение не наступает. Это, кстати, относится и к «вечно молодым» раковым клеткам, в которых механизм естественного ограничения роста не действует. (А для некоторых наследственных заболеваний характерна дефектная теломераза, что приводит к преждевременному клеточному старению.) Присуждение за работы в этой области Нобелевской премии является признанием фундаментального значения этих механизмов в живой клетке и огромного прикладного потенциала, заложенного в отмеченных работах.

Таинственная теломера

В хромосомах содержится наш геном, а «физическим» носителем генетической информации являются молекулы ДНК. Ещё в 1930 году Герман Мёллер (лауреат Нобелевской премии по физиологии и медицине 1946 года «за открытие появления мутаций под влиянием рентгеновского облучения») и Барбара Мак-Клинток (лауреат Нобелевской премии в той же категории 1983 года «за открытие транспозирующих генетических систем») обнаружили, что структуры на концах хромосом - так называемые теломеры - предотвращали слипание хромосом между собой. Было высказано предположение, что теломеры выполняют защитную функцию, но механизм этого явления оставался совершенно неизвестным.

Позже, в 1950-х, когда уже было в общих чертах понятно, как копируются гены, возникла другая проблема. При делении клетки основание за основанием дублируется и вся клеточная ДНК, - при помощи ферментов ДНК-полимераз. Однако для одной из комплементарных цепей возникает проблема: самый конец молекулы не может быть скопирован (дело тут в «посадочном» сайте ДНК-полимеразы). Вследствие этого, хромосома должна укорачиваться при каждом делении клетки, - хотя на самом деле этого не происходит (на рисунке: 1).

И та, и другая проблема были со временем решены, за что в этом году и вручают премию.

ДНК теломер защищает хромосомы

Ещё в начале своей научной карьеры Элизабет Блэкберн занималась картированием последовательностей ДНК на примере одноклеточного жгутикового организма тетрахимены (Tetrahymena ). На концах хромосомы она обнаружила повторяющиеся последовательности ДНК вида CCCCAA, функция которых была на тот момент совершенно неизвестна. В то же время Джек Шостак обнаружил, что линейные молекулы ДНК (что-то вроде минихромосомы), введённые в клетку дрожжей, очень быстро деградируют.

Исследователи встретились на конференции в 1980 г., где Блэкберн докладывала свои результаты, заинтересовавшие Шостака. Они решили провести совместный эксперимент, в основе которого было «растворение барьеров» между двумя эволюционно весьма далёкими видами (на рисунке: 2). Блэкберн выделила из ДНК тетрахимены последовательности CCCCAA, а Шостак присоединил их к минихромосомам, помещённым затем в клетки дрожжей. Результат, опубликованный в 1982 году, превзошёл ожидания: теломерные последовательности действительно защищали ДНК от деградации! Это явление наглядно продемонстрировало существование неизвестного ранее клеточного механизма, регулирующего процессы старения в живой клетке. Позже подтвердилось наличие теломер в подавляющем большинстве растений и животных - от амёбы до человека.

Фермент, синтезирующий теломеры

В 1980-х аспирантка Кэрол Грейдер работала под началом Элизабет Блэкберн; они начали изучение синтеза теломер, за который должен был отвечать неизвестный на ту пору фермент. В канун рождества 1984 года Грейдер зарегистрировала искомую активность в клеточном экстракте. Грейдер и Блэкберн выделили и очистили фермент, получивший название теломераза , и показали, что в его состав входит не только белок, но и РНК (на рисунке: 3). Молекула РНК содержит «ту самую» последовательность CCCCAA, используемую в качестве «шаблона» для достройки теломер, в то время как ферментативная активность (типа обратной транскриптазы ) принадлежит белковой части фермента. Теломераза «наращивает» ДНК теломеры, обеспечивая «посадочное место» для ДНК-полимеразы, достаточное для копирования хромосомы без «краевых эффектов» (то есть, без потерь генетической информации).

Теломераза отсрочивает старение клетки

Учёные начали активно заниматься исследованием роли теломер в клетке. Лаборатория Шостака установила, что дрожжевая культура с мутацией, приводящей к постепенному укорачиванию теломер, развивается очень медленно и, в конце концов, вообще прекращает рост. Сотрудники Блэкберн показали, что в тетрахимене с мутацией в РНК теломеразы наблюдается в точности такой же эффект, который можно охарактеризовать фразой «преждевременное старение» . (По сравнению с этими примерами, «нормальная» теломераза предотвращает укорачивание теломер и задерживает наступление старости.) Позже в группе Грейдер открыли, что те же механизмы работают и в клетках человека. Многочисленные работы в этой области помогли установить, что теломера координирует вокруг своей ДНК белковые частицы, образующие защитный «колпачок» для кончиков молекулы ДНК.

Части головоломки: старение, рак и стволовые клетки

Описанные открытия имели самый сильный резонанс в научном сообществе. Многие учёные заявляли, что укорачивание теломер является универсальным механизмом не только клеточного старения, но и старости всего организма в целом. Однако со временем стало понятно, что теломерная теория не является пресловутым «молодильным яблоком», поскольку процесс старения на самом деле чрезвычайно сложен и многосторонен, и не сводится исключительно к «подрезанию» теломер. Интенсивные исследования в этой области продолжаются и сегодня.

Большинство клеток делится не так уж часто, так что их хромосомы не находятся в зоне риска чрезмерного укорачивания и, в общем-то, не требуют высокой теломеразной активности. Другое дело - раковые клетки: они обладают способностью делиться бесконтрольно и бесконечно, как бы не зная о бедах с укорачиванием теломер. Оказалось, что в опухолевых клетках очень высокая активность теломеразы, что и защищает их от подобного укорачивания и придаёт потенциал к неограниченному делению и росту. В настоящее время существует подход к лечению рака, использующий концепцию подавления теломеразной активности в раковых клетках, что привело бы к естественному исчезновению точек бесконтрольного деления. Некоторые средства с антителомеразным действием уже проходят клинические испытания.

Ряд наследственных заболеваний характеризуется сниженной теломеразной активностью, - например, апластическая анемия, при которой из-за низкого темпа деления стволовых клеток в костном мозге развивается анемия. К этой же группе относится ряд заболеваний кожи и лёгких.

Открытия, сделанные Блэкберн, Грейдер и Шостаком, открыли новое измерение в понимании клеточных механизмов, и, несомненно, имеют огромное практическое применение - хотя бы в лечении перечисленных заболеваний, а может быть (когда-нибудь) - и в обретении если не вечной, то хотя бы более длительной жизни.

==========================================================================

ТЕЛОМЕРЫ И ТЕЛОМЕРАЗА: РОЛЬ В СТАРЕНИИ

В 1961 г. Хейфлик и Мурхед [ HayJlick ea 1961 ] представили данные о том, что даже в идеальных условиях культивирования фибробласты эмбриона человека способны делиться только ограниченное число раз (около 50). Было установлено, что при самом тщательном соблюдении всех мер предосторожности при пересевах клетки проходят in vitro ряд вполне морфологически различимых стадий (фаз), после чего их способность к пролиферации исчерпывается и в таком состоянии они способны находиться длительное время. В повторных опытах это наблюдение было многократно воспроизведено, последняя фаза жизни клеток в культуре была уподоблена клеточному старению , а сам феномен получил по имени автора название " предела Хейфлика ". Более того, оказалось, что с увеличением возраста донора число делений, которые были способны совершить клетки организма, существенно уменьшалось, из чего было сделано заключение о существовании гипотетического счетчика делений, ограничивающего общее их число [ Hayjlick ea 1998 ].

В 1971 г. Оловников [ Оловников ea 1971 ] на основании появившихся к тому времени данных о принципах синтеза ДНК в клетках предложил гипотезу маргинотомии , объясняющую механизм работы такого счетчика. По мнению автора гипотезы, при матричном синтезе полинуклеотидов ДНК-полимераза не в состоянии полностью воспроизвести линейную матрицу, реплика получается всегда короче в ее начальной части. Таким образом, при каждом делении клетки ее ДНК укорачивается, что ограничивает пролиферативный потенциал клеток и, очевидно, является тем "счетчиком" числа делений и, соответственно, продолжительности жизни клетки в культуре. В 19J2 г. Медведев [ Medvedev ea 1972 ] показал, что повторяющиеся копии функциональных генов могут запускать процесс старения или управлять им.

Открытие в 1985 г. теломеразы - фермента, который достраивал укороченную теломеру в половых клетках и клетках опухолей, обеспечивая их бессмертие [ Greider ea 1998 ], вдохнуло новую жизнь в гипотезу Оловникова. Было выполнено огромное количество работ [ Егоров ea 1997 , Оловников ea 1971 , Оловников ea 1999 , Faragher ea 1998 , Greider ea 1985 , Hayjlick ea 1998 , Olovnikov ea 1996 , Reddel ea 1998 , Weng ea 1997 , Zalensky ea 1997 ]. Установлены следующие основные факты:

1. Концы линейных хромосом с З"-конца ДНК заканчиваются повторяющимися последовательностями нуклеотидов, получившими название теломер, которые синтезируются специальным рибонуклеиновым ферментом теломеразой.

2. Соматические клетки эукариот, имеющие линейные хромосомы, лишены теломеразной активности. Их теломеры укорачиваются как в процессе онтогенеза и старения in vivo, так и при культивировании in vitro.

3. Половые клетки и клетки иммортализированных линий, а также опухолей имеют высокоактивную теломеразу, которая достраивает З"- конец ДНК, на котором реплицируется комплементарная цепь при делении.

4. Структуры теломер сильно различаются среди простейших, однако у всех позвоночных они одинаковы - (TTAGGG)n.

5. Имеются существенные межвидовые различия в длине теломер, причем у мыши общая их длина в несколько раз превышает таковую у человека (до 150 тыс. пар нуклеотидов у некоторых линий мышей и 7-15 т.п.н. у человека).

6. Репрессия теломеразы определяет клеточное старение в культуре ("лимит Хейфлика").

7. Клетки больных синдромом преждевременного старения Хатчинсона-Гилфорда и синдромом Дауна имеют укороченные теломеры.

Доказательства правомочности такого предположения были представлены Кионо и соавт. [ Kiyono ea 1998 ]: введение каталитического компонента теломеразы hTERT или теломеразной активности с помощью онкобелка вируса папилломы человека E7 в кератиноциты или клетки эпителия человека не приводило к их полной иммортализации. Она наступала лишь при дополнительном торможении регуляции антионкогена Rb или при угнетении экспрессии р16 в качестве второй важнейшей ступени этого процесса. При элиминации антионкогена р53 такого эффекта не наблюдалось. С другой стороны, протоонкоген с-Мус может активировать экспрессию теломеразы [ Wang ea 1998 ]. С помощью опосредованного микроклетками переноса маркированную геном пео хромосому 20 из стареющих и молодых диплоидных фибробластов человека ввели в молодые фибробласты. Во всех новообразованных клонах наблюдалось уменьшение пролиферативного потенциала на 17-18 удвоений популяции [ Егоров ea 1997 ]. Авторы склонны рассматривать полученные данные как свидетельство того, что отдельные теломеры способны ограничить пролиферативный потенциал клеток.

Показано, что старение некоторых тканей, например, эпителиальных клеток слизистой полости рта или роговицы глаза человека in vivo, не сопровождается укорочением теломер [ Egan ea 1998 , Kang ea 1998 ]. Экспрессия белка аденовируса 13 E1B 54К в нормальных клетках человека сопровождалась существенным увеличением их пролиферативного потенциала (до 100 удвоений). Когда затем деления все же прекратились и клетки перешли в фазу старения, то какого-либо существенного укорочения их теломер выявлено не было [ Gallimore ea 1997 ]. Экспрессию активности теломеразы наблюдали в печени крыс после частичной гепатэктомии [ Tsujiuchi ea 1998 ], т.е. в процессе регенерации. Не удалось наблюдать существенных изменений в продолжительности жизни или развитии мышей с "выключенным" геном теломеразы [ Lee ea 1998 ].

Многое в этой области еще предстоит выяснить. Тем не менее очевидно, что опыты с теломеразой открывают новые перспективы как в геронтологии, так и в онкологии для диагностики рака и, что особенно важно, для его лечения. См. Биология теломер

====================================================================

Демидовский лауреат Алексей Матвеевич Оловников

Оловников Алексей Матвеевич, родился 10 октября 1936 года в Владивостоке, закончил ВГУ - специалист в области биологии старения и теоретической молекулярной и клеточной биологии. Кандидат биологических наук, ведущий научный сотрудник Института Биохимической физики РАН. Оловников Алексей Матвеевич- автор цикла теоретических работ, в которых впервые в мире предсказано укорочение хромосом при старении, описан эффект концевой недорепликации любых линейных молекул ДНК и, кроме того, предсказано существование теломеразы как фермента, компенсирующего укорочение теломер (концевых участков хромосом).

А.М.Оловников сделал ряд ключевых теоретических обобщений, много лет спустя полностью экспериментально подтвержденных во многих лабораториях мира. Суть этих работ АМ Оловникова в следующем:

1) было указано на существование проблемы концевой недорепликации линейных молекул ДНК (концы как ахиллесова пята двойной спирали ДНК);

2) предсказано укорочение теломер (концов хромосом) при делениях соматических клеток, а также существование корреляции между величиной укорочения теломер и числом удвоений, выполненных делящимися нормальными эукариотическими клетками in vitro;

3) предсказано, что в нормальных половых клетках должна экспрессироваться новая форма ДНК-полимеразы, компенсирующая укорочение концов хромосом (то есть, предсказано существование теломеразы);

4) предсказано также, что в клетках злокачественных опухолей должна экспрессироваться эта компенсирующая ДНК-полимераза (то есть теломераза). Указано, что она создана природой для стабильности полового генома (предотвращает укорочение концов хромосом), но в то же самое время она наделяет раковые клетки потенциальным бессмертием (отсутствием у них лимита клеточных удвоений);

5) хорошо известный к тому времени факт кольцевой формы генома бактерий и многих вирусов был впервые интерпретирован как способ защиты их генома от концевой недорепликации ДНК: поскольку у кольцевой ДНК нет конца, то и нечему укорачиваться.

В целом, в этом цикле пионерских работ АМ Оловникова, о которых сообщалось, помимо статей, также в трудах международного конгресса по геронтологии (Киев, 1972) и в лекциях (в том числе в США, 1998) предложена серия идей, которые позволили связать воедино серию до того разрозненных фактов и фактически предложить исследовательскую программу, стимулировавшую соответствующие исследования в ряде биологических и биомедицинских дисциплин.

Следует также заметить, что поиски ингибиторов теломеразы как противораковых факторов, а также использование теломеразы в раковой диагностике, начались в связи с пониманием ключевой роли процесса концевой недорепликации концов ДНК в судьбе клетки, предсказанного А.М. Оловниковым. К настоящему времени начатое АМ Оловниковым новое научное направление – теломерная биология – развивается практически на всех континентах (кроме Антарктиды). Но, несмотря на экспериментально подтвержденные постулаты первой теории, АМ Оловников работает в настоящее время над принципиально новой теорией старения.

Елена Фокина

Старость – самое неожиданное, что поджидает нас в жизни.

Лев Троцкий

Одна из распространенных причин обращения к косметологу связана с желанием оттянуть старение, предотвратить увядание кожи и образование морщин. В распоряжении косметологов – богатый арсенал методов и средств воздействия для доставки в клетки недостающих питательных веществ, активизации их функции, и все же речь может идти лишь о замедлении возрастных изменений. А можно ли остановить старение раз и навсегда? Еще недавно этот вопрос показался бы по меньшей мере наивным, ведь всем известно, что этот процесс генетически запрограммирован. Но открытие теломераз позволило взглянуть на него по-другому.

Не так давно на рынке стали появляться косметические средства и пищевые добавки, содержащие активаторы теломеразы; производители заявляют, что они способны продлить способность клеток к размножению. А на какое количество размножений запрограммированы клетки?

Предел Хейфлика

Известно, что некоторые клетки могут размножаться почти до бесконечности – половые, стволовые, опухолевые, но подавляющее большинство клеток со временем утрачивают способность к делению. В 1960-е годы Леонард Хейфлик с группой ученых представил данные о том, что даже в идеальных условиях выращивания фибробласты, полученные от эмбриона человека, делятся ограниченное число раз (около 50 делений). Даже при самом тщательном соблюдении всех мер предосторожности при пересевах in vitro клетки проходят ряд морфологически различимых стадий, после чего способность фибробластов к пролиферации утрачивается, и в таком состоянии они могут находиться длительное время. Хейфлик пробовал заморозить фибробласты после 20 делений, а потом через год разморозить. Фибробласты делились в среднем еще 30 раз, то есть до своего предела.
Эти наблюдения были неоднократно подтверждены другими исследователями, а сам феномен получил название по имени автора – «предел Хейфлика».
Помимо этого оказалось, что с увеличением возраста донора число возможных делений для клеток организма существенно уменьшалось, из чего был сделан вывод о существовании некоего счетчика, ограничивающего общее число делений.
Но как объяснить наличие этого предела у одних клеток и его отсутствие у других?

Теломеры
Слово «теломер» происходит от двух греческих слов: τέλος – «конец», μέρος – «часть», и означает концевой участок хромосом.
Как известно, за хранение и передачу наследственной информации отвечают хромосомы. Полимерная молекула ДНК в составе хромосом сохраняет свою стабильность именно за счет теломеров. Теломеры – концевые фрагменты хромосом – были идентифицированы американцем Германом Мёллером в 1930-е гг., во время работы учёного в Советском Союзе. Исследования, проведенные в начале 1940-х годов, показали, что концевые участки защищают хромосомы от перестроек и разрывов.
Сегодня известно, что теломеры состоят из повторяющихся нуклеотидных участков и специальных белков, ориентирующих эти участки в пространстве определенным образом. Состав нуклеотидов в теломерах устойчив, так у всех позвоночных в них повторяется набор из шести нуклеотидов – TTAGGG (буквы обозначают нуклеиновые основания). Благодаря наличию этих устойчивых повторов в теломерах клеточная система восстановления повреждений не путает теломерный участок со случайным разрывом, благодаря чему конец одной хромосомы не может соединиться с разрывом другой. В отличие от других участков ДНК теломеры не кодируют белковые молекулы, т. е. не содержат ценной генетической информации.
В 1971 году российский ученый А. М. Оловников впервые выдвинул гипотезу, что при каждом делении клеток эти концевые участки хромосом укорачиваются. Деление клетки начинается с удвоения ее хромосом, содержащих генетический материал. Удвоение обеспечивает особый фермент – ДНК-полимераза. Это белок, функция которого состоит в том, чтобы, двигаясь вдоль цепочки ДНК, синтезировать другую такую же цепочку. ДНК-полимераза начинает свое движение не с самого кончика хромосомы, а чуть отступив от его начала. Вследствие неспособности ДНК-полимеразы к репликации конца ДНК-цепи, при каждом делении длина теломер сокращается на 50–200 пар оснований. Т.е. при каждом удвоении часть ДНК теряется, не попав под действие ДНК-полимеразы. Если бы потерянный участок содержал важную генетическую информацию, то могли бы быть утеряны гены, необходимые для синтеза необходимых для клетки белков.
Таким образом, длина теломерных участков определяет возраст клетки – чем они короче, тем клетка старше и большее число делений прошло с момента рождения клетки-предшественницы. Заметим, что это правило распространяется не на все клетки – нервные и мышечные клетки взрослого организма не делятся, теломерные участки в них не укорачиваются, а между тем они «стареют» и умирают. Поэтому вопрос о связи старения с длиной теломер остается и по сей день не до конца выясненным.
Итак, после новых и новых циклов деления теломеры будут сокращаться всё больше. Но если концы хромосом лишатся теломеров, то белок, который может чинить разорвавшиеся хромосомы, «принимает» их за разорванные части и может соединить между собой разные хромосомы. Укорачивание теломеров действует сродни митотическим часам (от слова «митоз» – процесса деления одной клетки на две), регулирующим пролиферативный потенциал клеток, и, по достижении критического уровня длины, предрасполагает к ассоциации теломер (ТАs) и хромосомной нестабильности, которые могут привести к изменениям в структуре клеток и генетическим расстройствам. Когда подобных повреждений в геноме накапливается определенное количество, в клетке запускается программа апоптоза – механизма клеточной смерти.
Существуют несколько исследований in vitro, указывающих на то, что укорачивание теломеров в ходе старения соматически нормальных клеток может являться причиной сенесценции (блокирования способности клеток к репликации, англ. senescence). Другими словами, критическая длина теломер останавливает процесс деления клеток.
По мере укорочения теломер клетки «стареют», хуже функционируют и реже делятся, а стволовые клетки реже производят новые копии, а к какому-то моменту перестают их производить совсем.
Было выяснено, что при уменьшении длины теломер до критического уровня (приблизительно 2,5 Kb) клетки и достигают предела Хейфлика.
Существует ли какой-нибудь природный механизм, позволяющий повлиять на укорочение теломеров?

Теломеразы

В октябре 2009 года лауреатами Нобелевской премии по физиологии и медицине стали американские учёные Элизабет Блэкбёрн (Elizabeth H. Blackburn), Кэрол Грейдер (Carol W. Greider) и Джек Шостак (Jack W. Szostak). Они удостоились этой престижной научной награды за открытие защитных механизмов хромосом, связанных с действием теломераз. Было установлено, что специальный фермент – теломераза – при помощи собственной РНК-матрицы достраивает теломерные повторы, присоединяя к ним нуклеотидные последовательности и удлиняя теломеры. Таким образом, было показано, что теломерные повторы могут быть восстановлены, а теломераза способна поддерживать длину теломеров постоянной.
Исследование началось в середине 1980-х годов, когда Кэрол Грейдер поступила на работу в лабораторию Э. Блэкбёрн, именно она обнаружила, что в клеточных экстрактах инфузории происходит присоединение теломерных повторов к синтетической теломероподобной «затравке». Очевидно, в экстракте содержался какой-то белок, способствовавший наращиванию теломеров. Грейдер и Блэкбёрн определили, что в состав теломеразы входят белковая молекула, которая, собственно, осуществляет синтез теломеров, и молекула РНК, служащая матрицей для их синтеза. Теломеразная РНК окружена белком и служит шаблоном, по которому белок пристраивает к теломерам хромосомы новые участки, те самые последовательности TTAGGG. В результате теломеры вновь удлиняются, и клеточное старение останавливается.
После обнаружения теломеразы у инфузорий затем ее выявили в дрожжах, растениях и у животных, в том числе в яичниках и раковых клетках человека. В большинстве дифференцированных клеток теломераза заблокирована, однако в стволовых и половых клетках она активна. Клетки, в которых функционирует теломераза (половые, раковые), бессмертны. В обычных (соматических) клетках, из которых в основном и состоит организм, теломераза не активна, поэтому теломеры при каждом делении клетки укорачиваются, что в конечном итоге приводит к их гибели.
В организме человека есть одна группа клеток, которая фактически бессмертна, – это клетки половой линии. В теле человека созревают половые клетки, одна из них участвует в оплодотворении, делится, из нее получается новый организм, у которого созревают свои половые клетки и так далее. В таких клетках фермент теломераза активен. Теломераза часто бывает активна и в клетках опухолей, а ученые добавляют ее в клетки, из которых хотят получить вечно живущую лабораторную культуру.
Какие задачи поставило перед учеными открытие теломеразы?

Направления научных исследований
В последние годы теломераза постоянно находится в фокусе внимания исследователей всего мира. В ферменте теломеразе исследователи видят и ключ к механизмам старения, и причину неудержимого размножения опухолевых клеток.
Известно, что теломераза, подавленная в соматических клетках (за исключением половых и стволовых клеток), активизируется в раковых клетках, поддерживая пролиферацию и развитие опухолей. Высокая активность теломеразы зафиксирована в большей части раковых опухолей.
Кроме того, было обнаружено, что некоторые злокачественные опухоли поддерживают длину своих теломеров в отсутствие активности теломеразы посредством механизма, получившего название ALT («альтернативное удлинение теломер» – alternative lengthening of telomeres), который обеспечивает возможность долгосрочной пролиферации клеток.
Наличие теломеразной активности в тех соматических клетках, где она обычно не проявляется, может быть маркёром злокачественной опухоли и индикатором неблагоприятного прогноза.
Показательный пример бессмертия опухолевых клеток – клеточная линия HeLa, которая используется в онкологических исследованиях. Ее клетки были получены в 1951 году в Балтиморе у пациентки Генриетты Лакс (Henrietta Lacks, в честь нее и дано название HeLa), страдавшей раком шейки матки. Вот уже больше шестидесяти лет потомки этих клеток живут и делятся в сотнях лабораторий разных стран.
Задача ученых – «отключить» теломеразу. Тогда теломеры в раковых клетках снова будут укорачиваться, после порогового числа делений клетки станут гибнуть, и рост опухоли прекратится. Значит, нужны ингибиторы теломеразы.
Ингибирующие агенты теломеразы могут вызывать потерю теломер раковыми клетками и гибель последних до того, как нормальные клетки с более длинными теломерами подвергнутся вредному воздействию из-за потери собственных теломер. Кроме того, теломераза может быть полезна для прогнозирования клинического курса пациента с подтверждённым раковым диагнозом.
Активность теломеразы можно использовать для ранней диагностики рака путём неинвазивного тестирования, а ингибиторы этого фермента могут найти применение в качестве противоопухолевых средств с высоким уровнем селективности для трансформированных клеток. Вместе с тем теломераза не является первоисточником рака.

С другой стороны, известно, что реактивация теломеразы продлевает «репликативную» жизнь соматических клеток, т. е. увеличивает число их делений. Однако, это именно то, что происходит в опухолях и приводит их к злокачественному росту.
Одним из предлагаемых путей достижения долголетия с учетом риска онкологических заболеваний является реактивация теломеразы в пролиферирующих клетках на фоне стимулирования активности онкосупрессоров.
Введение теломеразы в клетки фибробластов человека увеличивает количество их делений примерно в 3 раза без каких-либо признаков старения и патологии. Полученные данные свидетельствуют о том, что экспрессия теломеразы в культуре клеток человека совсем не обязательно вызывает развитие рака, т. е. сама по себе теломераза лишена свойств онкогена. Основным свойством теломеразы является контроль клеточного деления, а для возникновения опухолевого роста необходимы дополнительные мутации и факторы.
Исследователи Стэнфордского университета и компании Geron провели эксперименты с «кожей», выращенной из клеток человека в лабораторных условиях. Они установили, что инфицирование клеток модифицированным ретровирусом, встраивающим в их геном ген теломеразы, обеспечивает искусственной коже восстановление эластичности, мягкости и фактуры, характерных для кожи молодого организма.
В настоящее время ученые работают над проблемой, как увеличить продолжительность жизни путем активизации теломеразы, избежав при этом риска онкологических заболеваний.
А можем ли мы уже сейчас, не дожидаясь результатов научных разработок, предпринять какие-то шаги для сохранения собственных теломеров?

Влияние образа жизни на длину теломеров
Стресс пагубно влияет не только на клетки головного мозга, но и на весь организм в целом. Под действием стресса происходит снижение защитных механизмов, в том числе и на клеточном уровне, с уменьшением предела Хейфлика и преждевременной гибелью клеток.
С другой стороны, здоровый образ жизни замедляет старение клеток на молекулярном уровне. Таковы результаты исследования, проведенного учеными из Сан-Франциско, в котором приняли участие 239 женщин.
Все участницы эксперимента не имели серьезных заболеваний, не курили и находились в возрасте после менопаузы. Здоровый образ жизни означал: сон в достаточном количестве, здоровое питание и физические нагрузки. Участницы эксперимента вели дневники, в которых описывали свой образ жизни и переживаемые стрессы.
Авторы исследования измеряли длину теломеров в клетках иммунной системы у испытуемых в начале эксперимента и спустя год. Оказалось, что сильный стресс действительно способствовал укорочению теломеров, однако у женщин, которые вели более здоровый образ жизни, укорочение в пересчете на одно стрессовое событие было достоверно меньше, чем у женщин, ведущих менее здоровый образ жизни. То есть, похоже, что здоровый образ жизни, хоть и неспособен уменьшить число стрессов, помогает переносить их легче, без особого вреда для организма.