Главная · Вредные привычки · Гипоталамо гипофизарная надпочечниковая система тестовые вопросы. Стресс-реализующие системы - симпато-адреналовая система и гипоталамо-гипофизарно-надпочечниковая система. Влияние физической нагрузкина гипоталамо-гипофизарно-надпочечниковую систему

Гипоталамо гипофизарная надпочечниковая система тестовые вопросы. Стресс-реализующие системы - симпато-адреналовая система и гипоталамо-гипофизарно-надпочечниковая система. Влияние физической нагрузкина гипоталамо-гипофизарно-надпочечниковую систему

Эндокринология Эндокринология – наука, изучающая развитие, строение и функции желез внутренней секреции, а также биосинтез, механизм действия и обмен гормонов в организме, секрецию этих гормонов в норме и при патологии функции эндокринных желез, а также возникающие при этом эндокринные заболевания.


Железы внутренней секрецииЖелезы внутренней секреции – органы или группы клеток, которые синтезируют и выделяют в кровь БАВ. ГормоныГормоны – биологически активные вещества, вырабатываемые эндокринными железами, или железами внутренней секреции, и выделяемые ими непосредственно в кровь.




Гипоталамус Гипоталамус – высший нейроэндокринный орган, в котором происходит интеграция нервной и эндокринной систем. Крупноклеточные ядра: Антидиуретический гормон (АДГ) или вазопрессин Окситоцин Мелкоклеточные ядра: Либерины (рилизинг-факторы) Статины (ингибирующие факторы)


Либерины (рилизинг-факторы)Либерины (рилизинг-факторы) – усиливают секрецию тропных гормонов передней доли гипофиза (тиреолиберин, соматолиберин, пролактолиберин, гонадолиберин и кортиколиберин). Статины (ингибирующие факторы)Статины (ингибирующие факторы) – подавляют синтез тропных гормонов (соматостатин и пролактостатин).


Гипофиз Передняя доля (аденогипофиз): Адренокортикотропный гормон (АКТГ) Тиреотропный гормон (ТТГ) Гонадотропные гормоны (ГТГ): фолликулостимулирующий гормон (ФСГ) и лютеонизирующий гормон (ЛГ) Соматотропный гормон (СТГ) Лактотропный гормон (ЛТГ) или пролактин Средняя доля: Меланоцитостимулирующий гормон (МСГ) Липотропный гормон (ЛПГ) Задняя доля (нейрогипофиз): АДГ Окситоцин




Гонадотропные гормоны Фолликулостимулирующий гормон Стимулирует рост яичника и сперматогенез Лютеонизирующий гормон Обеспечивает развитие овуляции и формирования желтого тела Стимулирует выработку прогестерона в желтом теле Способствует секреции мужских и женских половых гормонов




Антидиуретический гормон Стимулирует реабсорбцию воды в дистальных канальцах почек Вызывает сужение артериол, что приводит к увеличению АД Окситоцин Вызывает сокращение гладкой мускулатуры матки Усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока




Минералокортикоиды Участвуют в регуляции минерального обмена Альдостерон усиливает в дистальных канальцах почек реабсорбцию Na, одновременно увеличивая при этом выведение с мочой ионов К Под влиянием альдостерона увеличивается секреция ионов Н в канальцевом аппарате почек


Глюкокортикоиды 1.Белковый обмен: Стимулируют процессы распада белка Тормозит поглощение аминокислот и синтез белка многими тканями 2.Жировой обмен: Усиливают мобилизацию жира из жировых депо Увеличивают концентрацию жирных кислот в плазме крови Способствуют отложению жира на лице и туловище 3.Углеводный обмен: Увеличивают глюконеогенез, образование гликогена Повышают уровень глюкозы в крови 4.Противовоспалительное действие: Угнетают все стадии воспалительной реакции (альтерация, экссудация и пролиферация) Стабилизируют мембраны лизосом, что предотвращает выброс протеолитических ферментов Угнетают процессы фагоцитоза в очаге воспаления


5.Противоаллергическое действие: Уменьшают количество эозинофилов в крови 6.Иммунодепрессивное действие: Угнетают клеточный и гуморальный иммунитет Подавляют выработку гистамина, антител, реакцию антиген-антитело Подавляют активность и уменьшают количесво лимфоцитов Уменьшают лимфоузлы, тимус, селезенку 7.ЦНС: Поддерживают нормальную функцию ЦНС (психическую сферу) 8.Сердечно-сосудистая система: Увеличивают сердечный выброс Повышают тонус периферических артериол 9.Половая функция: У мужчин тормозят секрецию тестостерона У женщин подавляют чувствительность яичников к ЛГ, подавляют секрецию эстрогенов и прогестерона 10. Стресс: Являются основными гормонами, обеспечивающими сопротивляемость стрессу




Литература: Эндокринология: учебник для медицинских вузов / Я. В. Благосклонная [и др.]. - 3-е изд., испр. и доп.- СПб. : СпецЛит, с. : ил. Физиология человека: Учебник / Под ред. В. М. Покровского, Г. Ф. Коротько. - М.: ОАО "Издательство "Медицина", с.: ил.: л. ил. (Учеб. лит. для студентов мед. вузов)

Роль гипоталамо-гипофизарно-надпочечниковой системы в процессе адаптации. Структурные изменения на клеточном и органном уровнях при физических нагрузках начинаются с мобилизации эндокринной функции, и в первую очередь - гормональной системы гипоталамус-гипофиз-надпочечники. Схематически это выглядит следующим образом.

Гипоталамус преобразует нервный сигнал реальной или предстоящей физической нагрузки в эфферентный, управляющий, гормональный сигнал. В гипоталамусе освобождаются гормоны, активирующие гормональную функцию гипофиза.

Ведущую роль в выработке адаптивных реакций среди этих гормонов играет кортиколиберин. Под его влиянием освобождается адренокортикотропный гормон гипофиза АКТГ, который вызывает мобилизацию надпочечников. Гормоны надпочечников повышают устойчивость организма к физическим напряжениям. В обычных условиях жизнедеятельности организма уровень АКТГ в крови служит и регулятором его секреции гипофизом. При увеличении содержания АКТГ в крови его секреция автоматически затормаживается. Но при напряженной физической нагрузке система автоматической регуляции изменяется.

Интересы организма в период адаптации требуют интенсивной функции надпочечников, которая стимулируется повышением концентрации АКТГ в крови. Адаптация к физической нагрузке сопровождается и структурными изменениями в тканях надпочечников. Эти изменения приводят к усилению синтеза кортикоидных гормонов. Глюкокортикоидный ряд гормонов активирует ферменты, ускоряющие образование пировиноградной кислоты и использование ее в качестве энергетического материала в окислительном цикле.

Одновременно стимулируются и процессы ресинтеза гликогена в печени. Глюкокортикоиды повышают и энергетические процессы в клетке, освобождают биологически активные вещества, которые стимулируют устойчивость организма к внешним воздействиям. Гормональная функция коры надпочечников во время мышечной работы небольшого объема практически не меняется. Во время большой по объему нагрузки происходит мобилизация этой функции.

Неадекватные, чрезмерные нагрузки вызывают угнетение функции. Это своеобразная защитная реакция организма, предупреждающая истощение его функциональных резервов. Секреция гормонов коры надпочечников меняется при систематической мышечной работе в целом по правилу экономизации. Повышенная продукция гормонов мозгового слоя надпочечников способствует росту энергопроизводства, усилению мобилизации гликогена печени и скелетных мышц. Адреналин и его предшественники обеспечивают формирование адаптивных изменений и до начала действия физической нагрузки.

Таким образом, гормоны надпочечников способствуют формированию комплекса адаптивных реакций, направленных на повышение устойчивости клеток и тканей организма к действию физических нагрузок. Надо сказать, что этим прекрасным адаптивным эффектом обладают только эндогенные гормоны, т. е. гормоны, выработанные собственными железами организма, а не введенные извне. Использование экзогенных гормонов не имеет физиологического смысла.

В функциях мозгового и коркового слоев надпочечников в процессе адаптации к физическим нагрузкам складываются новые соотношения взаимной коррекции. Так, при увеличенной продукции адреналина - гормона мозгового слоя надпочечников - увеличивается и продукция кортикостероидов, сдерживающих его мобилизующую роль. Иначе говоря, создаются условия для оптимального и адекватного нагрузке изменения продукции гормонов мозгового и коркового слоев надпочечников. 3.Основные положения современной теории адаптации 3.1.

Конец работы -

Эта тема принадлежит разделу:

Адаптация к физическим нагрузкам и резервные возможности организма. Стадии адаптации

Литература. Введение Многообразие и изменчивость в сочетании с динамической стабильностью.. Вне зависимости от точек зрения на пусковой момент зарождения жизни на Земле все живое от растений и простейших до..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Строение и гормоны надпочечников

Надпочечники состоят из мозгового и коркового вещества.

Мозговое вещество вырабатывает адреналин и в меньшей степени норадреналин.

Корковое вещество вырабатывает три вида стероидных гормонов:

- глюкокортикоиды (кортизол)

- минералокортикоид (альдостерон);

- андрогены (в небольшом количестве).

Под контролем гипоталамо-гипофизарной системы находится в основном выработка глюкокортикоидов.

Основные функции и эффекты

Основная функция глюкокортикоидов - обеспечениеустойчивости к стрессу, включая травмы, инфекции, голодание и пр. С этим тесно связаны и другие две функции глюкокортикоидов:

-противовоспалительное действие (при травмах и инфекциях неконтролируемое воспаление может привести к патологическим последствиям);

-стимуляция глюконеогенеза, обеспечивающего организм глюкозой в условиях длительного голодания.

Отсюда следуют основные эффекты глюкокортикоидов:

Поддержание деятельности сердечно-сосудистой системы, в частности артериального давления в условиях стресса;

Подавление воспаления на многих его этапах;

Стимуляция глюконеогенеза в печени;

Стимуляция липолиза (для обеспечения глюконеогенеза из липидов и для использования липидов как энергетических субстратов, а следовательно, экономии глюкозы);

Стимуляция распада белков (для обеспечения глюконеогенеза из аминокислот).

Механизмы действия

Глюкокортикоиды действуют через внутриклеточные рецепторы, повышая экспрессию(наследственная информация от гена преобразуется в РНК или белок.)

Синтез, хранение, транспорт и элиминация

Глюкокортикоиды, как и остальные стероидные гормоны:

Синтезируются из холестерина;

В клетках не депонируются, а синтезируются и сразу высвобождаются под действием стимулирующего фактора - АКТГ;

Переносятся кровью в основном в соединении с белками;

Элиминируются путем печеночного метаболизма с последующей экскрецией с мочой.

Прямые влияния

Главные факторы, стимулирующие выработку глюкокортикоидов, - это:

-стресс;

-суточный ритм (секреция глюкокортикоидов повышена утром; тем самым организм подготавливается к стрессам, которые он может испытывать в течение дня);

-гипогликемия.

Все эти факторы влияют на выработку глюкокортикоидов, повышая секрецию кортиколиберина и, как следствие, АКТГ (адренокортикотропного гормона).

Отрицательные обратные связи

Эти связи действуют между двумя уровнями гипоталамо-гипофизарно-надпочечниковой системы:

Глюкокортикоиды действуют на гипофиз, подавляя выработку АКТГ;

Глюкокортикоиды действуют на гипоталамус, подавляя выработку кортиколиберина.

Под действием МСГ (меланоцитостимулирующего гормона)усиливается выработка меланина в меланоцитах, что приводит к повышению пигментации кожи.

Дефицит и избыток

· Дефицит глюкокортикоидов проявляется признаками сниженной переносимости стресса (общей слабостью, утомляемостью, артериальной гипотонией с угрозой резкого падения артериального давления при стрессорных воздействиях, тяжелым течением инфекций) и метаболических нарушений (похуданием, потерей аппетита и тошнотой, иногда гипогликемией). В случае, если дефицит глюкокортикоидов первичный (то есть обусловлен поражением надпочечников, а не гипофиза или гипоталамуса), к перечисленным признакам добавляется гиперпигментация: устраняются тормозящие влияния глюкокортикоидов на секрецию кортиколиберина и АКТГ (отрицательные обратные связи), повышается выработка АКТГ и вместе с ним - МСГ.

·Избыток глюкокортикоидов проявляется признаками повышенного распада белка, особенно мышечной и соединительной ткани (атрофией мышц, остеопорозом, багровыми полосами на коже из-за ее растяжения, склонностью к кровоподтекам), усиленного глюконеогенеза вплоть до постоянной гипергликемии, артериальной гипертонией.

    Первая и вторая сигнальная системы, их возрастные особенности.

И.П. Павлов рассматривал поведение человека как высшую нервную деятельность, где общим для животных и человека являются анализ и синтез непосредственных сигналов окружающей среды, составляющих первую сигнальную систему действительности. По этому поводу Павлов писал: «Для животного действительность сигнализируется почти исключительно только раздражениями и следами их в больших полушариях, непосредственно приходящими в специальные клетки зрительных, слуховых и других рецепторов организма. Это то, что и мы имеем в себе как впечатления, ощущения и представления от окружающей внешней среды как общеприродной, так и от нашей социальной, исключая слово, слышимое и видимое. Это – первая сигнальная система действительности, общая у нас с животными».

В результате трудовой деятельности, общественных и семейных отношений у человека развилась новая форма передачи информации. Человек стал воспринимать словесную информацию через понимание значения слов, произносимых им самим или окружающими, видимых – написанных или напечатанных. Это привело к появлению второй сигнальной системы, свойственной исключительно человеку. Она значительно расширила и качественно изменила высшую нервную деятельность человека, так как внесла новый принцип в работу больших полушарий головного мозга (взаимосвязь коры с подкорковыми образованиями). По этому поводу Павлов писал: «Если наши ощущения и представления, относящиеся к окружающему миру, есть для нас первые сигналы действительности, конкретные сигналы, то речь, специально прежде всего кинестезические раздражения, идущие в кору от речевых органов, есть вторые сигналы, сигналы сигналов. Они представляют собой отвлечение от действительности и допускают обобщение, что и составляет... специально человеческое мышление, и науку – орудие высшей ориентировки человека в окружающем мире и в себе самом».

Вторая сигнальная система является результатом социальности человека как вида. Однако следует помнить, что вторая сигнальная система находится в зависимости от первой сигнальной системы. Дети, родившиеся глухими, издают такие же звуки, как и нормальные, но, не подкрепляя издаваемые сигналы через слуховые анализаторы и не имея возможности подражать голосу окружающих, они становятся немыми.

Известно, что без общения с людьми вторая сигнальная система (особенно речь) не развивается. Так, дети, унесенные дикими животными и жившие в зверином логове (синдром Маугли), не понимали человеческой речи, не умели говорить и утратили способность научиться разговаривать. Кроме того, известно, что молодые люди, попавшие в изоляцию на десятки лет, без общения с другими людьми забывают разговорную речь.

Физиологический механизм поведения человека является результатом сложного взаимодействия обеих сигнальных систем с подкорковыми образованиями больших полушарий. Павлов считал вторую сигнальную систему «высшим регулятором человеческого поведения», преобладающим над первой сигнальной системой. Но и последняя в известной степени контролирует деятельность второй сигнальной системы. Это позволяет человеку управлять своими безусловными рефлексами, сдерживать значительную часть инстинктивных проявлений организма и эмоций. Человек может сознательно подавлять оборонительные (даже в ответ на болевые раздражения), пищевые и половые рефлексы. В то же время подкорковые образования и ядра мозгового ствола, особенно ретикулярная формация, являются источниками (генераторами) импульсов, поддерживающих в норме мозговой тонус.

    Типы высшей нервной деятельности (ВНД). Особенности педагогического подхода к детям и подросткам с различными типами ВНД.

Условно-рефлекторая деятельность зависит от индивидуальных свойств нервной системы. Индивидуальные свойства нервной системы обусловлены наследственными особенностями индивидуума и его жизненным опытом. Совокупность этих свойств называют типом высшей нервной деятельности.

И.П. Павлов на основе многолетнего изучения особенностей образования и протекания условных рефлексов у животных выделил четыре основных типа высшей нервной деятельности. В основу деления на типы он положил три основных показателя:

а) силу процессов возбуждения и торможения;

б) взаимную уравновешенность, т. е. соотношение силы процессов возбуждения и торможения;

в) подвижность процессов возбуждения и торможения, т. е. скорость, с которой возбуждение может сменяться торможением, и наоборот.

На основании проявления этих трех свойств Павлов выделил следующие типы нервной деятельности;

1) тип сильный, неуравновешенный, с преобладанием возбуждения над торможением («безудержный» тип);

2) тип сильный, уравновешенный, с большой подвижностью нервных процессов («живой», подвижный тип);

3) тип сильный, уравновешенный, с малой подвижностью нервных процессов («спокойный», малоподвижный, инертный тип);

4) тип слабый, характеризующийся быстрой истощаемостью нервных клеток, приводящей к потере работоспособности.

Павлов считал, что основные типы высшей нервной деятельности, обнаруженные у животных, совпадают с четырьмя темпераментами, установленными для людей греческим врачом Гиппократом (IV в. до н. э.). Слабый тип соответствует меланхолическому темпераменту; сильный неуравновешенный тип – холерическому темпераменту; сильный уравновешенный, подвижный тип – сангвиническому темпераменту; сильный уравновешенный, с малой подвижностью нервных процессов – флегматическому темпераменту. Однако следует иметь в виду, что нервные процессы по мере развития человеческого организма претерпевают изменения, поэтому в разные возрастные периоды у человека возможны смены типов нервной деятельности. Подобные кратковременные переходы возможны под действием сильных стрессирующих факторов.

В зависимости от взаимодействия, уравновешенности сигнальных систем Павлов наряду с четырьмя общими для человека и животных типами выделил специально человеческие типы высшей нервной деятельности.

1. Художественный тип. Он характеризуется преобладанием первой сигнальной системы над второй. К этому типу относятся люди, непосредственно воспринимающие действительность, широко пользующиеся чувственными образами.

2. Мыслительный тип. К этому типу относятся люди с преобладанием второй сигнальной системы, «мыслители» с выраженной способностью к абстрактному мышлению.

3. Большинство людей относятся к среднему типу с уравновешенной деятельностью двух сигнальных систем. Им свойственны как образные впечатления, так и умозрительные заключения.

    Понятие об усталости, утомлении и переутомлении. Физиологические механизмы утомления и переутомления.

Работа неизбежно связана с утомлением. Утомление, характеризующееся снижением работоспособности, является нормальным, физиологическим следствием всякой деятельности. Хорошо знакомое каждому человеку ощущение усталости, по определению акад. А. А. Ухтомского, есть натуральный предупредитель о начинающемся утомлении.

Однако чувство усталости и утомление не всегда идут параллельно. Иногда человек чувствует усталость, хотя он только что приступил к работе и затратил очень мало энергии. В других случаях интересная разнообразная работа, выполняемая с увлечением, длительное время не вызывает ощущения усталости.

Утомление развивается не только в обычных, нормальных условиях трудовой деятельности. К утомлению ведут и такие факторы, как:

1) сознание бесцельности, бессмысленности выполняемой работы; 2) нежелание по какой-либо причине работать; 3) подавленное настроение и плохое самочувствие; 4) неблагоприятные условия среды и, в частности, плохо подготовленное рабочее место; 5) монотонность и однообразие работы.

В состоянии утомления снижается производительность труда и делается больше ошибок, чем обычно; утомленному человеку труднее сосредоточиться, найти нужное решение вопроса, ему приходится максимально напрягать внимание, волю. Чем дольше продолжается работа, тем больше возникает потребность в отдыхе, снятии утомления.

Физиологической, научной основой рационального режима труда и отдыха И. М. Сеченов считал работу без утомления, т. е. такую работу, при которой минимальное утомление снимается последующим отдыхом.

Состояние утомления, являясь сложным физиологическим процессом, определяется, как показали исследования советских ученых, временным расстройством деятельности нервных клеток коры головного мозга. Это расстройство в деятельности корковых клеток распространяется и на другие системы организма.

Чувство усталости предупреждает наш организм о возникших затруднениях в деятельности нервных клеток коры головного мозга. Подобные «сигнальные» чувства возникают и при таких состояниях, как чувство голода, жажды, боли и т. п. Утомление можно сравнительно легко устранить с помощью активного или пассивного отдыха.

А. А. Ухтомский указывает на следующие характерные последствия переутомления.

1. Неспособность удерживать достаточно бдительное внимание к работе, к ее обстановке. Отсюда увеличение ошибок и брака, с одной стороны, возрастающее количество несчастных случаев – с другой. Перед нами, следовательно, расстройство координации и внимания, прежде всего расстройство функции торможения.

2. Неспособность к созданию и усвоению новых полезных навыков при еще сохраняющейся способности автоматического повторения старых, наиболее укоренившихся. Старые и давно усвоенные работы выполняются даже нервнобольными людьми.

3. Расстройство старых автоматических навыков. То, что делалось до сих пор в порядке прочно усвоенных рефлексов – такие «мелочи», как надевание шапки перед выходом из дома, взятие с собой обыденных, нужных для работы предметов, – все требует теперь дополнительного контроля за собой.

При переутомлении снижается обычная творческая активность человека, гаснет инициатива, без видимого внешнего повода ухудшается настроение, появляются признаки скуки, тоски.

Борьба с переутомлением отвечает задачам как сохранения высокой работоспособности, так и профилактике болезней; при переутомлении защитные силы организма ослабевают, что способствует возникновению многих заболеваний.

    Железы внутренних секреций, их роль.

Понятие о гормонах и гормональной регуляции. Химия гормнов, механизм действия на физиологические и метаболические процессы. Регуляция эндокринных функций. Центральная регуляция. Роль гипоталамуса в регуляции функций гипофиза. Нейросекреция. Понятие о гипоталамических нейрогормонах. Нейрогипофиз. Антидиуретический гормон и окситоцин. Регуляция секреции антидиуретического гормона, химия, гормоно-метаболизм, физиологическое действие. Физиологическая регуляция секреции окситоцина, действие окситоцина на молочные железы, половую систему. Нейропептиды мозга. Гипофизарно-адреналовая система. Физиологическая регуля ция секреции адренокортикотропного гормона. Гормоны коры надпочечников, химия, метаболизм, физиоло гические метаболические эффекты. Катехоламины и их роль в регуляции эндокринных функций. Нервная регуляция секреции тиреотропного гормона. Химия тиреотропного гормона, его физиологическое действие. Гормоны щитовидной железы, синтез, влияние на метаболические процессы. Гормон роста и действие его на обмен веществ в организме. Гормоны околощитовидных желез. Паратгормон и тириокальцитонин, их роль в регуляции обмена кальция и фосфора. Поджелудочная железа и ее гормоны. Глюкоген, его действие на печень и жировую ткань. Роль инсулина в регуляции обмена углеводов. Гормоны желудочно-кишечного тракта. Эпифиз, анатомия, представление о гормонах эпифиза, роль эпифиза в регуляции эндокринных функций. Половые железы. Функция андрогенов и эстрогенов. Регуляция половых функций. Нервный и гипоталамичческий контроль секреции гонадотропных гормонов. Гормональная регуляция минерального обмена. Роль альдостерона, вазопрессина, дезоксикортикостерона и ренин-ангиотензиновой системы в регуляции натрия и калия в организме. Роль эндокринных желез в регуляции стрессорных реакций. Взаимосвязь кортикостероидов и катехоламинов и их значение в адаптации организма к вредоносным факторам внешней среды.

Гигиена детей и подростков (школьная гигиена)

Адренокортикотропный гормон

Строение

Регуляция синтеза и секреции

Максимальная концентрация в крови достигается в утренние часы, минимальная в полночь.

Активируют: кортиколиберин при стрессе (тревога, страх, боль), вазопрессин , ангиотензин II, катехоламины

Уменьшают: глюкокортикоиды .

Механизм действия

Мишени и эффекты

В жировой ткани стимулирует липолиз .

Методы определения

Концентрацию кортикотропина (АКТГ) аденогипофиза определяют радиоиммунологическими методами.

Нормальные величины

Гипофункция: Снижение уровня кортикотропина выявляется при ослаблении функции гипофиза, при синдроме Кушинга (опухоль коры надпочечников), введении глюкокортикоидов, при кортизол-секретирующих опухолях. Гиперфункция: Повышение концентрации гормона в крови отмечается при болезни Иценко-Кушинга, болезни Аддисона (недостаточности коры надпочечников), двустороняя адреналэктомия, посттравматические и послеоперационные состояния, инъекции АКТГ или инсулина . Специфичные симптомы:

  • активация липолиза;
  • увеличение пигментации кожи из-за частичного меланоцитстимулирующего эффекта, благодаря чему появился термин «бронзовая болезнь».

Гормоны надпочечника

  1. Минералокортикоиды (обмен воды и электролитов);
  2. Глюкокортикоиды (обмен белков и углеводов);
  3. Андрокортикоиды (эффекты половых гормонов).

В обычных биохимических лабораториях практически не осуществляется определение компонентов гипоталамической регуляции функции надпочечников и тропных гормонов гипофиза.

Уровень кортиколиберина гипоталамуса исследуют методами биологического тестирования. Проопиомеланокортин представляет собой пептид, включающий 254 аминокислоты. При его гидролизе в клетках переднего и промежуточного гипофиза образуется ряд гормонов: α-, β-, γ-меланоцитстимулирующие гормоны, адренокортикотропный гормон, β-, γ-липотропины, эндорфины, мет-энкефалин.

Общие кортикостероиды

Методы определения

Для установления содержания общих кортикостероидов в плазме крови используют:

  1. колориметрические методы, в основе которых лежат реакции - с фенилгидразином (наиболее специфичная), с 2,4‑дифенил­гидразином в кислом растворе, воостановление солями тетразолия, с гидразином изоникотиновой кислоты;
  2. флюориметрические способы, которые базируются на свойстве стериодов флюоресцировать в растворах крепкой серной кислоты и этанола, причем 95 % всей флюоресценции анализируемой плазмы приходится на долю кортизола и кортикостерона.

Вызвав биологический эффект, андрокортикоиды окисляются в печени и почках по боковой цепи у 17 атома углерода с образованием 17‑кетостероидов (17-КС): андростерона, эпиандростерона, 11-кето и 11‑β‑гидроксиандростерона и др.

В клинике изучается экскреция с мочой общих нейтральных 17-кетостероидов.

Следует иметь в виду, что источником образования 17‑КС является не только группа андрогенов, синтезируемых в коре надпочечников, но и половые гормоны. У мужчин, например, не менее 1/3 17‑КС, выделяемых с мочой, поступает за счет продукции половых желез и 2/3 – за счет биосинтеза в коре надпочечников. У женщин они в основном секретируются корой надпочечников. Определение 17-КС используют для оценки общей функциональной активности коры надпочечников. Точное представление о глюкокортикоидной или андрогенной функции с помощью этого теста получить нельзя и, поэтому, дополнительно определяют 17-ОКС, 11-ОКС или ряд половых гормонов. Наиболее распространен унифицированный метод по цветной реакции Циммермана.

Принцип

Колориметрическое определение основано на взаимодействии 17-КС с метадинитробензолом в щелочной среде, что приводит к образованию комплексов фиолетовой или красно-фиолетовой окраски с максимумом поглощения света при длине волны 520 нм. Существует множество модификаций реакции Циммермана.

Нормальные величины

Коэффициент пересчета: мкмоль/сутки × 0,288 = мг/сутки.

Показатели варьируют в зависимости от метода.

Клинико‑диагностическое значение

Необходимо помнить, что определение 17-КС у больных почечной недостаточностью имеет сомнительную диагностическую ценность.

Повышается выведение 17-КС при беременности, приеме АКТГ и анаболических стероидов, производных фенотиазина, мепробамата, пенициллина, крови наблюдается при синдроме Иценко-Кушинга, адрено-генитальном синдроме, андрогено-продуцирующей опухоли коры надпочечников, вирилизирующей опухоли коры надпочечников, опухоли яичек.

Снижение концентрации 17-КС в моче вызывает прием производных бензодиазепина и резерпина, может свидетельствовать о первичной недостаточности коры надпочечников (болезнь Аддисона), гипофункции гипофиза, гипотиреозе, повреждении паренхимы печени, кахексии.

Глюкокортикоиды

Строение


Глюкокортикоиды являются производными холестерола и имеют стероидную природу. Основным гормоном у человека является кортизол.

Синтез

Схема синтеза стероидных гормонов


Осуществляется в сетчатой и пучковой зонах коры надпочечников. Образованный из холестерола прогестерон подвергается окислению 17-гидроксилазой по 17 атому углерода. После этого в действие вступают еще два ключевых фермента: 11-гидроксилаза и 21-гидроксилаза. В конечном итоге образуется кортизол.

Регуляция синтеза и секреции

Активируют: АКТГ, обеспечивающий нарастание концентрации кортизола в утренние часы, к концу дня содержание кортизола снова снижается. Кроме этого, имеется нервная стимуляция секреции гормонов.

Уменьшают: кортизол по механизму обратной отрицательной связи.

Механизм действия

Цитозольный.

Мишени и эффекты

Мишенью является мышечная, лимфоидная, эпителиальная (слизистые оболочки и кожа), жировая и костная ткани, печень.

Белковый обмен

  • значительное повышение катаболизма белков в мишеневых тканях. Однако в печени в целом стимулирует анаболизм белков;
  • стимуляция реакций трансаминирования через синтез аминотрансфераз , обеспечивающих удаление аминогрупп от аминокислот и получение углеродного скелета кетокислот.

Углеводный обмен

В целом вызывают повышение концентрации глюкозы крови :

  • усиление мощности глюконеогенеза из кетокислот за счет увеличения синтеза фосфоенолпируват-карбоксикиназы;
  • увеличение синтеза гликогена в печени за счет активации фосфатаз и дефосфорилирования гликогенсинтазы;
  • снижение проницаемости мембран для глюкозы в инсулинзависимых тканях.

Липидный обмен

  • стимуляция липолиза в жировой ткани благодаря увеличению синтеза ТАГ-липазы , что усиливает эффект, СТГ, глюкагона, катехоламинов, то есть кортизол оказывает пермиссивное действие (англ. permission - позволение).

Водно-электролитный обмен

  • слабый минералокортикоидный эффект на канальцы почек вызывает реабсорбцию натрия и потерю калия ;
  • потеря воды в результате подавления секреции вазопрессина и излишняя задержка натрия из-за увеличения активности ренин-ангиотензин-альдостероновой системы.

Противовоспалительное и иммунодепрессивное действие

  • увеличение перемещения лимфоцитов, моноцитов, эозинофилов и базофилов в лимфоидную ткань;
  • повышение уровня лейкоцитов в крови за счет их выброса из костного мозга и тканей;
  • подавление функций лейкоцитов и тканевых макрофагов через снижение синтеза эйкозаноидов посредством нарушения транскрипции ферментов фосфолипазы А 2 и циклооксигеназы.

Другие эффекты

Повышает чувствительность бронхов и сосудов к катехоламинам, что обеспечивает нормальное функционирование сердечно-сосудистой и бронхолегочной систем.

Методы исследования

Основной гормон этой группы - кортизол (гидрокортизон) часто определяется самостоятельно или параллельно с АКТГ лигандными методами: радиоиммунными, иммуноферментными, конкурентного белкового связывания (с транскортином) с использованием стандартных наборов реактивов.

Нормальные величины

Влияющие факторы

Патология

Гипофункция

Первичная недостаточность - болезнь Аддисона проявляется:

  • гипогликемия;
  • повышенная чувствительность к инсулину;
  • анорексия и снижение веса;
  • слабость;
  • гипотензия;
  • гипонатриемия и гиперкалиемия;
  • усиление пигментации кожи и слизистых (компенсаторное увеличение количества, обладающего небольшим меланотропным действием).

Вторичная недостаточность возникает при дефиците АКТГ или снижении его эффекта на надпочечники - возникают все симптомы гипокортицизма, кроме пигментации.

Гиперфункция

Первичная - болезнь Кушинга проявляется:

  • снижение толерантности к глюкозе - аномальная гипергликемия после сахарной нагрузки или после еды;
  • гипергликемия из-за активации глюконеогенеза;
  • ожирение лица и туловища (связано с повышенным влиянием инсулина при гипергликемии на жировую ткань) - буйволиный горбик, фартучный (лягушачий) живот, лунообразное лицо, глюкозурия;
  • повышение катаболизма белков и повышение азота крови;
  • остеопороз и усиление потерь кальция и фосфатов из костной ткани;
  • снижение роста и деления клеток - лейкопения, иммунодефициты, истончение кожи, язвенная болезнь желудка и двенадцатиперстной кишки;
  • нарушение синтеза коллагена и гликозаминогликанов;
  • гипертония благодаря активации ренин-ангиотензиновой системы.

Вторичная - синдром Иценко-Кушинга (избыток) проявляется схоже с первичной формой.

17-Оксикортикостероиды

В клинической лабораторной диагностике определяют группу 17‑оксикортикостероидов (17-ОКС) в моче и плазме крови. До 80% 17-ОКС в крови составляет кортизол. Кроме него, к 17-ОКС относят 17‑окси­кортикостерон, 17-окси-11-дегидрокортикостерон (кортизон), 17‑окси-11‑дезоксикортикостерон (соединение S Рейхштейна).

При определении 17-ОКС наиболее распространены колориметрические мeтоды, базирующиеся на реакции, 17-ОКС с фенилгидразином, которая приводит к образованию окрашенных соединений – гидразонов-хромогенов (метод Porter and Silver). Группа этих стероидов составляет основную часть метаболитов коры надпочечников (80-90%), экскретируемых с мочой, и включает также тетрагидропроизводные кортикостероидов. Эти соединения находятся в моче как в свободной, так и в связанной форме (коньюгаты с глюкуроновой, серной, фосфорной кислотами, липидами). Для освобождения кортикостероидов из связанных форм используют ферментативный или кислотный гидролиз. Наиболее специфичным считается ферментативный гидролиз β-гюкуронидазой.

Нормальные величины

Клинико‑диагностическое значение

Диагностически значимо возрастает содержание 17-ОКС в плазме и экскреция гормонов с мочой при болезни Иценко-Кушинга, аденоме и раке надпочечников, после хирургического вмешательства, при синдроме эктопической продукции АКТГ, тиреотоксикозе, ожирении, стрессе, тяжелой гипертензии, акромегалии. Снижение выявлено при болезни Аддисона (иногда полностью отсутствуют), гипопитуитаризме, гипотиреозе, андрогенитальном синдроме (врожденной гиперплазии надпочечников).

11-Оксикортикостероиды

Для более полной характеристике работы коры надпочечников, особенно при лечении стероидными препаратами параллельно с исследованием 17-ОКС в плазме крови определяют 11-ОКС (гидрокортизон и кортикостерон). Наиболее известно флюорометрическое определение, основанное на способности неконьюгированных 11-ОКС вступать в реакцию с концентрированной или умеренно разбавленной серной кислотой с образованием флюоресцирующих продуктов.

Эта система - важнейшее звено адаптационного синдрома, описанного Г. Селье. Под адаптационным синдромом понимается совокупность реакций организма, возникающих при воздействии неблагоприятных для организма раздражителей и ведущих к внутреннему напряжению организма - стрессу. Это могут быть физические факторы (высокая или низкая температура, травмы), психические воздействия (угрожающе сильный звук) и др. При этом в организме возникают однотипные неспецифические изменения, проявляющиеся быстрым выделением кортикостероидов под влиянием кортикотропина.

Г. Селье выделил три фазы адаптационного синдрома

Фаза тревоги (от нескольких часов до нескольких суток): происходит мобилизация защитных сил организма. Повышается

активность коры надпочечников, что увеличивает секрецию адреналина и повышение сахара в крови. Таким образом, происходит активизация системы гипоталамус-гипофиз- надпочечники.

Фаза сопротивляемости: повышается устойчивость организма к внешним воздействиям. Усиливается секреция кортикостероидов надпочечников (особенно глюкокортикоидов), и организм обнаруживает повышенную устойчивость к действиям неблагоприятных факторов среды.

Фаза стабилизации состояния (либо стадия истощения) наступают при продолжающемся воздействии отрицательных факторов. В фазе истощения резко снижается сопротивляемость организма и появляются патологические изменения, например, в ЖКТ возникают язвы, в миокарде - мелкоочаговые некрозы и т.д. Возможна и гибель организма.

ЩИТОВИДНАЯ ЖЕЛЕЗА

Щитовидная железа расположена на передней поверхности шеи ниже щитовидного хряща, состоит из двух долей, соединённых перешейком (рис. 10.4). Её масса составляет 15-30 г. Структурно-функциональная единица щитовидной железы - фолликул. Клетки фолликулов поглощают йод из крови и способствуют синтезу гормонов тироксина и трийодтиронина. Концентрация йода в фолликулах в 300 раз больше, чем в плазме крови. Чтобы происходил синтез тиреоидных гормонов, суточное потребление йода должно составлять не менее 150 мг. В молодом возрасте гормоны щитовидной железы стимулируют рост, физическое и психическое развитие организма. Они регулируют обмен веществ , увеличивают теплопродукцию, активизируют дыхательную, сердечно-сосудистую и нервную систему.

При гипофункции щитовидной железы возникает заболевание микседема, характеризующееся снижениемобмена веществ , падением температуры тела, замедлением пульса, вялостью движений, ухудшением памяти, сонливостью. Масса тела увеличивается. Кожа становится сухой и отёчной.

Если гипофункция щитовидной железы проявляется в детском возрасте, то развивается кретинизм. Особенности этого заболевания - задержка роста, нарушение пропорций тела, задержка полового созревания и психического развития.

При гиперфункции щитовидной железы (гипертериозе) развивается Базедова болезнь - диффузный токсический зоб, болезнь Грейвса (рис. 10.5). Человек худеет, несмотря на то, что может потреблять большое количество пищи. У него повышается АД, появляется мышечная дрожь, слабость, усиливается нервная возбудимость, возникает пучеглазие (экзофтальм). Это заболевание лечат, хирургическим путём удаляя часть железы, или применяя лекарственные препараты, подавляющие синтез тироксина.

Как при недостаточной, так и при избыточной функции щитовидной железы развивается зоб. В первом случае это обусловлено компенсаторным увеличением числа фолликулов железы, хотя продукция гормонов уменьшена. Такой зоб называется эндемическим: он встречается в местностях с низким содержанием йода в питьевой воде, пище (например, на Кавказе). Кроме того, увеличение щитовидной железы может быть вызвано повышением её активности.

В особых клетках щитовидной железы вырабатывается гормон кальцитонин, регулирующий обмен кальция и фосфора в организме. Орган-мишень этого гормона - костная ткань. Кальцитонин тормозит поступление фосфора и кальция из костной ткани в кровь. Секреция кальцитонина зависит от содержания кальция в плазме крови: увеличение кальция в крови усиливает, а уменьшение - подавляет его секрецию

Рис. 10.5. Базедова болезнь. Характерный экзофтальм: больная до операции (слева) и вскоре после операции (справа).

Рис. 10.4.Щитовидная железа . 1 - подъязычная кость; 2 - щитоподъязычная перепонка; 3 - пирамидальная доля; 4 - левая доля; 5 - трахея; 6 - перешеек щитовидной железы; 7 - правая доля;8 - перстневидный хрящ; 9 - щитовидный хрящ.

ПАРАЩИТОВИДНЫЕ ЖЕЛЕЗЫ

Представлены двумя парами мелких желёз, располагающимися на задней поверхности щитовидной железы; общая масса их не превышает 1,18 г. Железы выделяют паратиреоидный гормон (паратгормон). Нарушение деятельности желёз может привести к смерти вследствие судорог дыхательных мышц. При гипофункции паращитовидных желёз в результате падения уровня кальция в крови возникают судороги мышц (тетания) и задержка развития зубов у детей раннего возраста.

Паратгормон - антагонист гормона кальцитонина. При избыточном количестве паратгормона повышается количество кальция в крови, понижается количество фосфата, и одновременно повышается их выделение с мочой. В итоге происходит разрушение костной ткани, вплоть до появления патологических переломов костей.

ЭПИФИЗ

Шишковидное тело (эпифиз) - железа внутренней секреции массой 0,2 г, верхний придаток мозга, расположен в области промежуточного мозга. По внешнему виду напоминает еловую шишку. Главный гормон эпифиза - мелатонин. Характерна обратная зависимость секреции мелатонина от уровня освещенности. В связи с этим не исключена роль эпифиза как регулятора суточных гормональных ритмов организма.

В настоящее время установлено, что эпифиз наряду с гипоталамо-гипофизарной системой регулирует водно-солевой, углеводный и фосфорно-кальциевый обмен, а также выработку гормонов другими эндокринными железами. Доказано тормозящее действие эпифиза

на выработку гонадотропных гормонов гипофиза и процессы роста. Опухоли эпифиза вызывают у мальчиков преждевременное половое созревание (до десятилетнего возраста!). В настоящее время изучают противоопухолевое влияние эпифиза. Однако функции этой железы еще не до конца изучены.

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА

Смешанная железа, обладающая как внешней (экзокринной), так и внутренней (эндокринной) секрецией. К эндокринной части поджелудочной железы относят островки Лангерганса диаметром 0,1- 0,3 мм, общая их масса не превышает 1/100 массы поджелудочной железы. Крупные α-клетки островков вырабатывают гормон глюкагон, мелкие β-клетки - инсулин, δ-клетки - соматостатин.

Инсулин - анаболический гормон, стимулирующий процессы синтеза гликогена из глюкозы, содержащейся в крови. Гликоген, в отличие от глюкозы, нерастворимое вещество: он откладывается в клетках как энергетический запас (своего рода, животный аналог растительного крахмала). Инсулин способствует превращению глюкозы в гликоген в печени и мышцах, увеличивая проницаемость клеточных мембран для глюкозы, регулирует не только углеводный, но и жировой, белковый, минеральный, водный обмен веществ . При недостаточной секреции инсулина возникает сахарный диабет - заболевание, характеризующееся стойкой гипергликемией (повышение содержания глюкозы в крови), что может приводить к потере сознания в результате гипергликемического шока. Кратковременная гипергликемия может возникнуть после приема в пищу большого количества углеводов.

Глюкагон по своим функциям - антагонист инсулина. Он усиливает расщепление гликогена в печени и повышает уровень глюкозы в крови. Повышается количество глюкозы в крови (гипергликемия), появляется сахар в моче (глюкозурия), выделение мочи увеличивается до 10 л в сутки (полиурия), усиливается жажда, повышается аппетит.

Соматостатин относят к паракринным гормонам. Он уменьшает секрецию инсулина, глюкагона и пищеварительных соков, а также угнетает перистальтику пищеварительного тракта, замедляя всасывание.

ПОЛОВЫЕ ЖЕЛЕЗЫ

Гонады - яичники у женщин и семенники (яички) у мужчин - железы смешанной секреции: производят половые клетки, выделяющиеся в половые пути, и половые гормоны, выделяющиеся в кровь.

В мужских половых железах образуются гормоны андрогены, а в женских - эстрогены и прогестерон. Благодаря андрогенам и эстрогенам происходит развитие вторичных половых признаков. Прогестерон играет важную роль в процессе беременности.

Женские половые гормоны образуются в фолликулах яичников. Под их влиянием осуществляется рост и развитие половых клеток и организма женщины в целом. Они регулируют менструальный цикл, беременность, подготовку к кормлению новорождённого молоком.

Мужские половые гормоны образуются железистыми клетками Лейдига, расположенными в рыхлой соединительной ткани между извитыми канальцами яичка. Они выделяют андрогены - тестостерон и андростерон, которые способствуют росту и развитию, половому созреванию и половой функции мужчины. Ежедневная потребность организма мужчины в андрогенах составляет около 5 мг.

Секреция половых гормонов происходит под влиянием гонадотропных гормонов гипофиза. В случае недостаточности выделения гонадотропных гормонов - при инфантилизме - развитие полового аппарата замедляется, не происходит сперматогенез, фолликулы не достигают зрелости, невозможна беременность. Нервная регуляция функций половых желёз заключается в рефлекторном влиянии на процессы образования в гипофизе гонадотропных гормонов. При сильных эмоциях половой цикл может полностью прекратиться (психогенная аменорея у женщин). Половые гормоны оказывают выраженное влияние на высшую нервную деятельность (ВНД) мужчины и женщины. При кастрации нарушаются процессы торможения в больших полушариях.


Похожая информация.